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Abstract 

Research suggests that listeners simultaneously update talker-specific generative models 

to reflect structured phonetic variation. Because past investigations exposed listeners to talkers of 

different genders, it is unknown whether adaptation is talker-specific or rather linked to a broader 

sociophonetic class. Here we test determinants of listeners’ ability to update and apply talker-

specific models for speech perception. In six experiments (n = 480), listeners were first exposed 

to the speech of two talkers who produced ambiguous fricative energy. The talkers’ speech was 

interleaved during exposure, and lexical context differentially biased interpretation of the 

ambiguity as either /s/ or /ʃ/ for each talker. At test, listeners categorized tokens from ashi – asi 

continua, one for each talker. Across conditions and experiments, we manipulated exposure 

quantity, talker gender, blocked versus interleaved talker structure at test, and the degree to 

which fricative acoustics differed between talkers. When test was blocked by talker, learning was 

observed for different but not same gender talkers. When talkers were interleaved at test, 

learning was observed for both different and same gender talkers, which was attenuated when 

fricative acoustics were constant across talkers. There was no strong evidence to suggest that 

adaptation to multiple talkers required increased quantity of exposure beyond that required to 

adapt to a single talker. These results suggest that perceptual learning for speech is achieved via 

a mechanism that represents a context-dependent, cumulative integration of experience with 

speech input and identity critical constraints on listeners’ ability to dynamically apply multiple 

generative models in mixed talker listening environments. 
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Introduction 

 Robust speech perception requires listeners to resolve an extensive computational hurdle; 

namely, there is no one-to-one relationship between the acoustics patterns in speech input and a 

speaker’s intended linguistic message (Liberman et al., 1967). Individual talkers differ in how 

they instantiate speech sounds, and thus who is speaking serves as a primary source of variability 

that contributes to the lack of invariance between speech acoustics and speech segments. Talker 

differences in phonetic properties of speech can reflect physiological aspects of the talker (Fant, 

1973; Peterson & Barney, 1952), sociophonetic characteristics (Byrd, 1992; Johnson & 

Beckman, 1997; Klatt, 1986), and even idiosyncratic differences in pronunciations habits (Allen 

et al., 2003; Chodroff & Wilson, 2017; Hillenbrand et al., 1995; Johnson & Beckman, 1997; 

Theodore et al., 2009). Because of these talker differences in speech production, one talker’s 

production of a given speech category (e.g., the /s/ in sun) may be acoustically identical to a 

different talker’s production of a different speech category (e.g., the /ʃ/ in shun) (Newman, 

Clouse, & Burnham, 2001). A theoretical account of how listeners map acoustics to meaning 

given extensive variability in speech input remains an unsolved challenge in the domain of 

speech perception (Saltzman, et al., 2021; Liberman, et al., 1957). 

 The lack of invariance in speech input requires that perceptual systems also be not 

invariant. Classification models for speech based on naïve invariance cannot achieve similar 

accuracy to human listeners, even when using as many as 24 unique and informative acoustic 

cues towards phoneme identity (McMurray & Jongman, 2011). Rather, perception must be able 

to adapt in order to accommodate contextual variation in the input, such as a particular talker, a 

group of talkers who share social and physiological characteristics, or a particular environment 

wherein speech is predictably and systematically altered (Kleinschmidt & Jaeger, 2015). Indeed, 
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human listeners adapt constantly to the input around them (Bradlow & Bent, 2008; Clopper & 

Pisoni, 2004; Drouin et al., 2016; Giovannone & Theodore, 2021; Kraljic & Samuel, 2005; 

Norris et al., 2003; Sidaras et al., 2009; Tarabeih-Ghanayim et al., 2020; Theodore et al., 2015, 

2019; Theodore & Miller, 2010; Theodore & Monto, 2019; Tzeng et al., 2021; Weatherholtz & 

Jaeger, 2016). In some cases, supervisory signals (e.g., lexical guidance, audiovisual cues, 

orthographic cues) help to disambiguate otherwise unclear acoustics, and listeners can leverage 

this guidance to inform interpretation of subsequent input (Bertelson et al., 2003; Drouin & 

Theodore, 2018; Keetels et al., 2016; Norris et al., 2003; Samuel & Kraljic, 2009; Tzeng et al., 

2021). In other cases, listeners adjust expectations without explicit supervision via sensitivity to 

underlying statistical regularities in speech (e.g., Idemaru & Holt, 2014; Liu & Holt, 2015; 

McMurray et al., 2009; Theodore et al., 2019; Theodore & Monto, 2019). 

The ideal adapter framework of speech adaptation (Kleinschmidt & Jaeger, 2015) 

provides a unifying account of distributional and lexically guided learning for speech perception. 

In this framework, speech sounds are represented as a distribution of acoustic-phonetic cues 

formed by long-term experience with the cue-sound mappings of a given language. The ideal 

adapter framework assumes that talkers’ output consists of samples from these distributions, and 

perception is the result of inferring these generative distributions given listeners’ beliefs of cue-

sound mappings. Adaptation is the consequence of updating prior beliefs by integrating observed 

evidence with existing priors. Computationally, the ideal adapter theory is implemented in a 

Bayesian belief-updating model. Initial input from a novel talker is processed based on prior 

knowledge (e.g., knowledge of language- or gender-specific cue distributions). Learning reflects 

updating a category-specific distribution to integrate observed evidence with the prior 

distribution, weighted by confidence in prior beliefs. The output is posterior distribution beliefs 
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about category means and variances, reflecting the likelihood of the prior distribution (e.g., 

formed by global experience) given the observed evidence (e.g., from the specific talker). 

Iterative updating is predicted to occur until a change in statistics occurs, which may be triggered 

by a change in context (e.g., a new talker). Thus, the ideal adapter framework predicts that 

learning reflects a context-dependent, cumulative integration of listeners’ experience with speech 

input in that context (Kleinschmidt & Jaeger, 2015). 

 Rather than representing speech sound knowledge as a single generative model for a 

given speech sound, the ideal adapter framework posits that listeners maintain multiple models, 

each specific to a given situation, such as an individual talker (Kleinschmidt & Jaeger, 2015). 

This is not without cost. Compared to a system that only tracks a single model, maintaining 

talker-specific cue distributions requires a finer grain of statistical information to be represented 

in memory. Additionally, increasing specificity of model representation tracks inversely with the 

amount of input informative to that model; that is, representing experience by talker-specific 

models necessarily leads to fewer observations in each talker’s model compared to a model that 

aggregates observations across talkers. Consequently, talker-specific models may be less reliable 

than aggregate representations. Kleinschmidt and Jaeger (2015) acknowledge these costs and 

propose generalization across talkers (towards a more general, group-specific model) as a 

potential means to ameliorate them. They additionally identify a trade-off between the cost of 

maintaining multiple models and the increased specificity of speech perception that they may 

provide. As between-talker variation increases, the benefits of maintaining talker-specific models 

may outweigh or justify any cognitive or perceptual costs of maintaining multiple models. 

Conversely, generalizing to a group-level model may be warranted given more acoustically 

similar talkers.  
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Another factor relevant to the trade-off between the cost of maintaining multiple models 

and the increased specificity of speech perception is the frequency that a listener is required to 

dynamically retrieve different models. In a multi-talker listening environment, a system reliant 

on talker-specific models may require listeners to switch the model they use (and update) on 

potentially every utterance. A more general architecture, such as maintaining and retrieving a 

group-level model, may allow listeners to maintain a single general model for all speech within a 

given listening situation. The ideal adapter framework remains agnostic as to whether 

dynamically switching between models in online speech perception incurs any cost to the 

listener. Also unspecified are whether there may be limits on the number of models that can be 

simultaneously maintained or the speed at which models may be dynamically retrieved. 

However, previous research examining adaptation to multiple talkers has posited a cost when 

listeners must choose which generative model to use (Luthra et al., 2021).  

In this context, the goal of the current work is to test the broad hypothesis that perceptual 

learning for speech reflects listeners’ ability to maintain and retrieve talker-specific models. Here 

we use a modified version of the widely influential lexically guided perceptual learning 

paradigm to examine talker-specificity of perceptual learning given a mixed talker listening 

environment (Drouin et al., 2016; Drouin & Theodore, 2018; Eisner & McQueen, 2005; Liu & 

Jaeger, 2018; Myers & Mesite, 2014; Norris et al., 2003; Reinisch & Holt, 2014; Samuel & 

Kraljic, 2009; Tzeng et al., 2021). Below we provide an overview of lexically guided perceptual 

learning for speech, summarize key findings in the extant literature regarding talker-specificity 

of lexically guided perceptual learning, and then introduce the current experiments. 

Lexically guided perceptual learning 

Evidence of lexically guided perceptual learning has rich empirical support and recent 
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work has established that learning in this paradigm follows predictions made by the ideal adapter 

framework (Liu & Jaeger, 2018; Luthra et al., 2021; Saltzman & Myers, 2021; Tzeng et al., 

2021). The standard paradigm includes two phases, exposure and test. During exposure, listeners 

hear speech from a single talker. Acoustic energy of canonical sounds is replaced with acoustic 

energy that is perceptually ambiguous between two speech sounds. For example, canonical 

productions of /s/ or /ʃ/ are replaced by spectral energy perceptually ambiguous between /s/ and 

/ʃ/. A supervisory signal is provided, such that the listener is aware of the intended category of 

the ambiguous sound. Most commonly, this supervisory signal is lexical – achieved by 

embedding the ambiguous sound in items that form real words only if they are interpreted as one 

category. For example, replacing the canonical /s/ in personal with ambiguous spectral energy 

allows surrounding phonetic context to guide listeners to interpret the energy as /s/ because 

personal is an English word and pershonal is not. Likewise, replacing the canonical /ʃ/ in 

publisher with ambiguous spectral energy allows phonetic context to guide listeners to interpret 

the energy as /ʃ/ because publisher is a real word but publiser is not. Lexical context biases 

interpretation of the ambiguous sound towards the category that supports lexical access (Ganong, 

1980). In the standard paradigm, lexical bias is manipulated between subjects (e.g., one group of 

listeners is biased to perceive the ambiguity as /s/ and a different group is biased to perceive the 

ambiguity as /ʃ/), which allows listeners in each bias group to differentially build a generative 

model for the exposure talker. The most common task used during exposure is a lexical decision 

task, though lexically guided perceptual learning is not contingent on explicit lexical decision 

(Drouin & Theodore, 2018; Jesse, 2021; Keetels et al., 2016; Luthra et al., 2021; McQueen et al., 

2006; Samuel, 2016; van Linden & Vroomen, 2007). Following exposure, listeners complete a 

phonetic identification test phase that is identical between bias groups, with stimuli drawn from a 
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continuum that spans the two categories manipulated during exposure (e.g., tokens from an ashi 

to asi continuum). Evidence of learning manifests as a difference in performance at test, 

indicating that listeners modified the mapping between acoustics and meaning in line with 

lexical bias during exposure (e.g., more asi responses for listeners in the /s/-bias compared to the 

/ʃ/-bias exposure group). 

Previous research examining talker-specificity of lexically guided perceptual learning 

Findings from the perceptual learning domain have provided myriad contributions to a 

theoretical understanding of dynamic adaptation in speech perception, including an 

understanding of situations that promote talker-specific learning versus generalization across 

talkers. Two factors of interest for the current work include the role of between-talker acoustic 

similarity and the flexibility of model adaptation and retrieval. The ideal adapter framework 

posits that talker-specificity is warranted when “variation between talkers is so large that the 

differences in the cue distributions of phonetic categories within each talker are obscured” 

(Kleinschmidt & Jaeger, 2015). Generalization across talkers is thus predicted to occur when 

between-talker variability is relatively minimal, whereases specificity of learning is predicted to 

occur when between-talker variability is relatively maximal. However, support for this prediction 

is limited. For example, given exposure to a female talker, Eisner and McQueen (2005) observed 

generalization to a novel female and a novel male talker when the novel talker was cued by the 

vowel (and not fricative) portions of the test continuum. Tamminga et al. (2020) exposed 

listeners to one of four female talkers, and then tested generalization to either a novel female 

talker or a novel male talker. Robust generalization was found to the novel female talker, but not 

to the novel male talker. Whether generalization was driven by acoustic similarity between the 

(female) exposure talker and the female test talker, or rather by the shared indexical trait of 
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gender, is an open question. 

Further evidence of generalization across talkers comes from Kraljic and Samuel (2005), 

who exposed listeners to either a male or female talker and then tested learning for both talkers. 

Exposure to the male talker resulted in learning for the male talker, which did not generalize to 

the female talker. In contrast, however, exposure to the female talker did result in learning that 

generalized to the male talker. This unique pattern of results was explained by post hoc acoustic 

analyses that showed a low degree of acoustic similarity between the male exposure tokens and 

the female test tokens and a high degree of acoustic similarity between the female exposure 

tokens and the male test tokens. These results highlight an important role of acoustic similarity 

between talkers for perceptual learning; talkers with similar acoustic characteristics may 

constitute a single situation in the ideal adapter framework and thus may share a single 

generative model linked to acoustic similarity rather than talker or gender. 

Though studies that examine generalization of learning given exposure to a single talker, 

reviewed above, yield mixed evidence in support of talker-specificity of learning, other studies 

that examine learning given exposure to two talkers are consistent with talker-specific learning. 

Kraljic and Samuel (2007) modified the standard lexically guided learning paradigm to provide 

exposure to two talkers that differed in gender, with lexical information used to bias perception 

of an ambiguous fricative in opposite directions such that the ambiguous fricative mapped to /s/ 

for one talker and /ʃ/ for the other talker. Exposure and test trials were both blocked by talker. 

Learning was observed, suggesting that listeners adapted separate models for each talker. This 

finding was replicated by Luthra et al. (2021) and extended to show that listeners could maintain 

talker-specific generative models when input from each talker was interleaved during exposure. 

However, learning given that interleaved exposure was only observed when the exposure dose 
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was doubled (32 critical exposures) compared to the dose required to invoke learning given 

blocked talker exposure (16 critical exposures). That is, Luthra et al. (2021) posit that there is a 

processing cost associated with switching between talker-specific models given interleaved 

talker exposure that results in an adaptation process that requires twice as much exposure to learn 

a talker’s cue distributions compared to exposure that is blocked by talker. Luthra et al. (2021) 

interpreted these results as being consistent with domain-general learning theories, citing 

findings within motor-skill learning where high trial-by-trial variability facilitates high 

contextual interference, which in turn leads to poorer performance (Magill & Hall, 1990; Shea & 

Morgan, 1979). 

Though these studies have provided critical insight towards a theoretical understanding of 

talker-specificity and acoustic similarity for perceptual learning, they do not completely explicate 

the role of model adaptation and retrieval because test (and, in most cases, exposure too) were 

always blocked by talker. That is, blocking test by talker does not require listeners to 

dynamically retrieve talker-specific generative models as would be required given trial-by-trial 

talker variability at test. A meaningful distinction should be made here between choosing which 

model to update (given supervisory lexical signals during exposure) and choosing which model 

to use for categorization (during test, in which no supervisory lexical information is available). 

Interleaving talkers’ input during exposure is a critical first step towards testing the hypothesis 

that listeners adapt talker-specific generative models; however, to test whether listeners 

dynamically retrieve a talker’s specific model in categorization of speech, trial-by-trial talker 

variability must be present when listeners are performing speech categorization. In addition, 

interleaving talkers’ speech during exposure and test promotes ecological validity in simulating a 

mixed talker listening environment and removes a memory-based confound in the blocked test 
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design in which time between exposure and test differs between talkers. 

Introducing the current experiments 

The goal of the current work is to test the hypothesis that perceptual learning for speech 

reflects listeners’ ability to maintain and retrieve talker-specific models. Six experiments were 

conducted; a summary of the manipulations across experiments is shown in Table 1. Listeners in 

each experiment were exposed to the speech of two talkers during a talker identification 

exposure phase in which words produced by each talker were randomly interleaved in time. The 

phonetic input for each of the two talkers was manipulated such that lexical information was 

used to bias perception of ambiguous spectral energy as /s/ for one talker and as /ʃ/ for the other 

talker. That is, lexical information was used to elicit perceptual recalibration in opposite 

directions for the two talkers heard during exposure. To provide a replication of the primary 

finding Luthra et al. (2021) – that simultaneous adaptation to multiple talkers requires increased 

exposure – each experiment manipulated exposure dose to include either a standard dose of 20 

critical productions for each talker, or a doubling of that dose, yielding 40 critical productions for 

each talker. We defined 20 tokens as our standard dose because this dose reflects the quantity of 

exposure most often provided in previous investigations of lexically guided perceptual learning. 

Following exposure, all listeners completed a test phase in which learning was assessed for both 

talkers using a phonetic identification task. 

In experiment 1, the two exposure talkers differed in gender and, critically, the test phase 

was blocked by talker. Accordingly, experiment 1 provides a direct replication of Luthra et al. 

(2021). In experiment 2, speech from the two (different gender) talkers is interleaved at exposure 

and at test; thus, listeners are required to make frequent, dynamic changes to the generative 

model they use at test in experiment 2 compared to experiment 1. If adaptation reflects dynamic 



12 
 

retrieval of separate generative models, then learning will be observed even in the face of trial-

by-trial talker variability at test. Attenuated or absent learning in experiment 2 compared to 

experiment 1 would severely constrain the claim that listeners use unique generative models to 

guide online perception. Experiment 3 probes the extent to which perception of acoustics is 

conditioned on talker by holding the critical fricative acoustics constant across the two (different 

gender) talkers. Qualitative reasoning in the lexically guided perceptual learning domain often 

assumes this level of control to guide conclusions that perception of speech acoustics has been 

conditioned on talker identity; here we examine this hypothesis directly. Learning in experiment 

3 is expected if, and only if, listeners maintain separate generative models. 

Experiments 4 – 6 parallel experiments 1 – 3 with one key exception; instead of being 

exposed to two talkers that differ in gender, listeners heard speech from two women during 

exposure. Accordingly, the two talkers’ voices are more similar in experiments 4 – 6 compared 

to experiments 1 – 3. Past research suggests that acoustic similarity may be a driving force for 

generalization across talkers (e.g., Kraljic & Samuel, 2005) and the ideal adapter framework 

under consideration here specifically posits that adaptation may be linked to gender-specific 

instead of talker-specific models. To our knowledge, all work to date, if involving exposure to 

more than one talker, has included talkers of different genders, and thus evidence in support of 

talker-specificity for lexically guided perceptual learning has been confounded with gender 

(Kraljic & Samuel, 2007; Luthra et al., 2021). Thus, experiments 4 – 6 provide a strict test of 

talker-specific adaptation by assessing whether learning occurs for two talkers of the same 

gender, which is predicted to occur if learning is talker-specific. In contrast, evidence of learning 

in experiments 1 – 3 but not experiments 4 – 6 would suggest that listeners learn and retrieve 

gender- but not talker-specific generative models. 
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Within each of the six experiments, the quantity of exposure was also manipulated to 

reflect a standard exposure dose (i.e., 20 critical productions per talker) or twice the standard 

exposure dose (i.e., 40 critical productions per talker). If perceptual learning for multiple talkers 

requires increased exposure, as suggested by Luthra et al. (2021), then any observed patterns of 

learning will be limited to the extended dose exposure conditions. 

Experiment 1 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the following criteria: between 18 – 35 years of age, monolingual 

English speaker born in and currently residing in the US, no history of language related 

disorders, Prolific score ≥ 98, and completed ≥ 10 previous Prolific experiments. Further, we 

limited participation from the Prolific pool to exclude participants who had participated in any 

previous lexically guided perceptual learning study conducted in our laboratory and to ensure 

unique participants across the six experiments presented in this manuscript. The sample included 

33 women and 47 men with an average age of 28 years (SD = 5 years). An additional three 

participants were tested but excluded from analyses based on preregistered exclusion criteria, 

which included failure to pass the headphone screen (n = 1) and a flat identification function at 

test (n = 2). Participants were randomly assigned to either the 1x dose (n = 40) or 2x dose (n = 

40) condition. 

The sample size was determined based on an a priori power analysis. Evaluating our 

primary hypotheses requires power to detect an effect of bias. In principle, the ability to replicate 

the primary finding of Luthra et al. (2021) – that perceptual learning of multiple talkers requires 

additional exposure – requires power to detect an interaction between bias and exposure dose. 
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However, as reported in Luthra et al. (2021), this interaction was not observed. Because of this, 

our power analyses were based on the bias effect observed in the “2x” exposure dose conditions 

of Luthra et al. (2021), referred to as experiments 2C and 2D. We combined data across these 

experiments to have the most precise estimate of the effect size for bias in the experiments where 

an effect of bias was reported. We executed our power analysis using the simr package (Green & 

MacLeod, 2016); a reproducible pipeline for the power analysis is provided in the OSF 

repository for this manuscript. The power analysis showed that 40 participants yields high power 

(97%) to detect an effect of bias of the magnitude observed in experiments 2C and 2D of Luthra 

et al. (2021). Accordingly, we set the sample size to 40 participants in each dose condition across 

all experiments. We note that an additional set of power analyses executed with the simr package 

(Green & MacLeod, 2016) showed that this sample size had high power (87%) to detect a bias 

by dose interaction of the magnitude observed in Tzeng et al. (2021), which reflected an 

attenuation of the lexically guided perceptual learning effect (for a single talker) given exposure 

to 10 versus 20 critical productions.  

Stimuli. Two sets of stimuli were created, one for each of two talkers who were fictiously 

referred to as Joanne and Peter. Each set contained 80 exposure tokens and six test tokens. 

Exposure tokens were auditory recordings of 40 English words, 20 containing a single instance 

of /s/ and no occurrence of /ʃ/ (e.g., rehearsal) and the other 20 containing a single /ʃ/ and no 

occurrence of /s/ (e.g., publisher). The /s/ and /ʃ/ words follow those used in Kraljic and Samuel 

(2005) and were matched in mean syllable length and word frequency. Two variants of each 

word were created, one that contained the natural production of /s/ or /ʃ/ (the clear variant) and 

one in which the natural production of /s/ or /ʃ/ was replaced with a digital mixture of a natural 

/s/ and /ʃ/ production that was judged to be perceptually ambiguous between /s/ and /ʃ/ (the 
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ambiguous variant). Test tokens consisted of a six-step continuum that perceptually ranged from 

/ɑʃi/ to /ɑsi/. The fricative portion of the test continuum was created by digitally mixing energy 

from natural /ʃ/ and /s/ productions in different weights to yield continuum steps that ranged 

from 70% /ʃ/ - 30% /s/ to 20% /ʃ/ - 80% /s/ in six equidistant steps. 

The stimulus set for Joanne was a subset of tokens used in Tzeng et al. (2021), to which 

the reader is referred for comprehensive details on stimulus construction. The stimulus set for 

Peter was created by applying the Change Gender function in Praat (Boersma, 2002) to Joanne’s 

stimuli using the parameters identified in Luthra et al. (2021), which included a formant shift 

ratio of 0.8, a median pitch of 100 Hz, and no change to either pitch range or duration. As in 

Luthra et al., these parameters were sufficient to induce a robust change in perceived gender. 

Figure 1 displays two acoustic measurements for Joanne and Peter’s stimulus sets, including (1) 

fundamental frequency as a measure of the sound source, which is an important cue to talker and 

gender identity and (2) center of gravity, which is a measurement of spectral energy in the 

fricative. Fundamental frequency was measured as the mean fundamental frequency in the 

voiced portion of each token using the Quantify Source script in the GSU PraatTools package 

(Owren, 2008). Center of gravity was measured as the first spectral moment in the midpoint 

region of each fricative using the script developed by DiCanio (DiCanio, n.d.). 

As can be viewed in Figure 1, fundamental frequency was higher for Joanne compared to 

Peter, consistent with the parameters used in the Change Gender function. For both talkers, 

center of gravity for the clear variants is lower for /ʃ/ compared to /s/, reflecting the expected 

relationship between center of gravity and place of articulation (e.g., Jongman et al., 2000; 

Newman et al., 2001). Moreover, center of gravity for the ambiguous variants falls intermediate 

to the clear variants, consistent with the digital signal manipulation used to create the ambiguous 



16 
 

variants. Of note, though the Change Gender parameters do not suggest nor explicitly allow 

control over changes in voiceless energy, this function does introduce a scaling of center of 

gravity in line with the change in fundamental frequency. Specifically, center of gravity for 

Peter’s tokens is shifted towards lower frequencies compared to Joanne’s tokens. As we discuss 

in experiment 3, this scaling thus yields stimuli in which spectral characteristics for the critical 

/s/ and /ʃ/ energy in the tokens is not equated across talkers. All stimuli are available on the OSF 

repository for this manuscript. 

Procedure. All experiments presented here were web-based studies hosted on the Gorilla 

platform (Anwyl-Irvine et al., 2020). After providing informed consent, participants completed a 

headphone screen, an exposure phase, and a test phase. The headphone screen used tasks 

reported in Woods et al. (2017) and Milne et al. (2021), which are brief, dichotic listening tasks 

developed to screen for headphone use in web-based experiments. Participants were given two 

opportunities to pass the Woods et al. screen and, if they did not pass on either of these attempts, 

one opportunity to pass the Milne et al. screen. If a participant failed either of the first two 

attempts, then they were given a reminder to put on headphones before continuing to the next 

attempt. As reported in the participants section of each experiment, compliance with headphone 

use as measured by these screens was very high, resulting in minimal attrition due to failure to 

pass the headphone screen. 

The exposure phase consisted of either 80 trials [1x dose; 2 talkers x (20 /s/ words + 20 

/ʃ/ words) x 1 repetition] or 160 trials (2x dose; 2 talkers x (20 /s/ words + 20 /ʃ/ words) x 2 

repetitions) of a talker identification task, modeled after the gender identification task used in 

Luthra et al. (2021). Because the gender identification task was not optimal for the same gender 

manipulations reported in experiments 4 – 6, a talker identification task was used to hold the task 
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constant across all experiments reported in this manuscript. Each listener heard both talkers 

during the exposure phase, with exposure stimuli selected to differentially bias listeners to 

perceive ambiguous variants as /s/ for one talker and /ʃ/ for the other talker. For the /s/-bias 

talker, stimuli included the ambiguous /s/ variants and the clear /ʃ/ variants. For the /ʃ/-bias 

talker, stimuli included the ambiguous /ʃ/ variances and the clear /s/ variants. Assignment of 

talker to the /s/- and /ʃ/-bias conditions was counterbalanced across listeners within each dose 

condition. Listeners in the 1x dose condition heard one repetition of the appropriate /s/ and /ʃ/ 

tokens for each talker; listeners in the 2x dose condition heard two repetitions of the appropriate 

/s/ and /ʃ/ tokens for each talker. In both dose conditions, exposure tokens for both talkers were 

presented in a different randomized order for each participant; that is, tokens from the two talkers 

were interleaved during the exposure phase. On each trial, listeners heard one exposure token 

and were asked to indicate the talker by clicking on one of two buttons labeled either “Joanne” or 

“Peter.” Feedback was provided on every trial in the form of a green checkmark for correct 

responses and a red “X” for incorrect responses. Feedback remained on the screen for 750 ms. 

Trials were separated by 1000 ms, timed from the participant’s response to the onset of the next 

auditory stimulus. In order to provide an opportunity to learn the association between the talkers’ 

voices and their names prior to beginning the talker identification task, the 80 (or 160) exposure 

trials were preceded by 10 familiarization trials in which listeners heard five words produced by 

each talker while seeing the talker’s name appear on the screen; these words were the same for 

each talker and did not contain any instances of either /s/ or /ʃ/. 

The test phase consisted of 72 trials of a phonetic identification task, 36 trials for each 

talker. The 36 trials for each talker consisted of six cycles of the six steps of the test continuum; 

each cycle was a separate randomized order of the six continuum steps for each participant. On 
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each trial, listeners heard one test token and were asked to indicate its identity as quickly as 

possible by clicking on one of two buttons labeled either “ashi” or “asi.” No feedback was 

provided at test, and trials were separated by 1000 ms time from the participant’s response to the 

onset of the next auditory stimulus. The test phase was blocked by talker. Talker order and 

button assignment were counterbalanced across listeners within each dose condition. 

The entire procedure lasted approximately 15 minutes, and participants were paid $2.50 

for their participation. 

Results 

Performance during the exposure phase was analyzed in terms of proportion correct 

talker identification, which was near ceiling across participants (mean = 0.99, SD = 0.01, range = 

0.93 – 1.00). Performance at test was analyzed in terms of asi responses. To visualize test 

performance, we first calculated mean proportion asi responses for each talker and each 

continuum step separately for each participant. Figure 2 shows grand means calculated over by-

subject means. Visual inspection suggests a robust learning effect in that proportion asi 

responses are greater for the /s/-bias talker compared to the /ʃ/-bias talker. No effect of dose is 

visually apparent. 

To analyze these patterns statistically, trial-level responses (0 = ashi, 1 = asi) were 

analyzed using generalized linear mixed effects models (GLMMs) with the binomial response 

family as implemented in lme4 (Bates et al., 2015); the Satterthwaite approximation of degrees 

of freedom was used to evaluate statistical significance using lmerTest (Kuznetsova et al., 

2017).1 Following Luthra et al. (2021), separate models were constructed for each dose 

                                                 
1 In addition to the R packages cited in the main text, we also acknowledge the dplyr and ggplot2 
packages from the tidyverse suite (Wickham et al., 2019) that were used for data manipulation 



19 
 

condition. Each of these models included continuum step, talker bias, and their interaction as 

fixed effects. Continuum step was entered into the model in terms of percent /s/ energy in the 

continuum step as a scaled/centered continuous variable; talker bias (/ʃ/ = -0.5, /s/ = 0.5) was 

entered as a mean-centered contrast. The random effects structure consisted of random intercepts 

by subject and random slopes for step, talker bias, and their interaction by subject, which reflects 

the maximal random effects structure given the experimental design. 

 The full results of each model are shown in Table 2. Both models revealed a main effect 

of talker bias that reflected more asi responses for the /s/-bias talker compared to the /ʃ/-bias 

talker (1x: 𝛽̂𝛽 = 2.218, SE = 0.501, z = 4.428, p < 0.001; 2x: 𝛽̂𝛽 = 1.463, SE = 0.609, z = 2.402, p = 

0.016), indicative of lexically guided perceptual learning. For the 1x dose condition, there was an 

interaction between step and talker bias (𝛽̂𝛽 = -1.430, SE = 0.623, z = -2.293, p = 0.022), 

suggesting that the magnitude of the bias effect varied across continuum steps; this interaction 

was not reliable for the 2x dose condition (𝛽̂𝛽 = -0.962, SE = 0.544, z = -1.495, p = 0.135). 

To directly compare learning between the two dose conditions, an additional GLMM was 

constructed. The model structure was identical to that of the individual dose models except that 

dose (and all interactions with dose) were included in the fixed effects structure. Dose was 

entered into the model as a mean-centered contrast (1x = -0.5, 2x = 0.5). The full results of this 

model are shown in Table 3. Of note, the model showed a main effect of bias (𝛽̂𝛽 = 1.802, SE = 

0.391, z = 4.613, p < 0.001), but no significant interaction between bias and dose (𝛽̂𝛽 = -1.061, SE 

= 0.665, z = -1.595, p = 0.111). Moreover, a likelihood ratio test showed no significant change in 

goodness of fit between the omnibus model and a simpler model in which dose was removed as a 

                                                 
and data visualization, and the interactions (Long, 2019) and cowplot (Wilke, 2019) packages 
that were used for data visualization. 
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fixed effect (𝜒𝜒(4) = 4.182, p = 0.382). 

Experiment 2 

Consistent with Luthra et al. (2021), the results of experiment 1 confirm that listeners can 

simultaneously adapt multiple generative models given interleaved exposure to two talkers, at 

least for talkers of different genders. However – in contrast to Luthra et al. (2021) – we found no 

evidence that interleaved talker input required additional exposure beyond the standard dose in 

this paradigm (i.e., 20 critical exposures). Specifically, learning was observed in both the 1x and 

2x dose conditions, and there was no evidence that the magnitude of learning differed between 

the two dose conditions. In experiment 1, though exposure to the two talkers was interleaved 

during the exposure phase, the test phase was blocked by talker. In experiment 2 we examine 

learning for interleaved talker input at both exposure and test. If listeners can dynamically 

retrieve distinct generative models, then learning will be observed even in the face of trial-by-

trial talker variability at test. A failure to observe learning given interleaved test would suggest 

input-driven constraints on model retrieval. 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the criteria outlined for experiment 1. The sample included 42 

women, 37 men, and one participant who preferred not to report gender. The mean age of the 

sample was 27 years (SD = 5 years). One additional participant was tested but excluded from 

analyses due to exhibiting a flat identification function at test. Participants were randomly 

assigned to either the 1x dose (n = 40) or 2x dose (n = 40) condition. 

Stimuli. The stimuli were identical to those used in experiment 1. 

Procedure. The procedure was identical to that described for experiment 1 with one key 
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exception. Namely, instead of blocking test by talker, the 72 test trials (2 talkers x 6 continuum 

steps x 6 cycles) were presented in a single block that interleaved the two talkers’ test stimuli. 

Specifically, six cycles of 12 test stimuli were presented, with each cycle consisting of different 

randomized order of both talkers’ test stimuli. 

Results 

Performance was analyzed as outlined for experiment 1. Proportion correct talker 

identification during exposure was near ceiling (mean = 1.00, SD = 0.01, range = 0.94 – 1.00). 

Aggregate performance at test is shown in Figure 2. Visual inspection suggests a robust learning 

effect such that proportion asi responses are greater for the /s/-bias talker compared to the /ʃ/-bias 

talker. No effect of dose is visually apparent. 

As shown in Table 2, the results of the models for each dose condition showed a robust 

influence of talker bias on asi responses. In both the 1x and 2x dose conditions, there were more 

asi responses for the /s/-bias talker compared to the /ʃ/-bias talker (1x: 𝛽̂𝛽 = 2.246, SE = 0.529, z = 

4.243, p < 0.001; 2x: 𝛽̂𝛽 = 1.944, SE = 0.483, z = 4.020, p < 0.001). The interaction between step 

and bias was not significant for either dose condition (p ≥ 0.070 in both cases). 

The results of the model that included both dose conditions are shown in Table 3. There 

was a main effect of bias (𝛽̂𝛽 = 2.031, SE = 0.351, z = 5.793, p < 0.001), consistent with the 

results of the individual models for each dose condition. There was no reliable interaction 

between talker bias and dose (𝛽̂𝛽 = 0.092, SE = 0.614, z = 0.150, p = 0.881) nor between talker 

bias, dose, and continuum step (𝛽̂𝛽 = 0.339, SE = 0.588, z = 0.576, p = 0.564), suggesting that the 

magnitude of the learning effect did not vary as a function of exposure dose. A likelihood ratio 

test showed no significant change in goodness of fit between the omnibus model and a simpler 

model in which dose was removed as a fixed effect (𝜒𝜒(4) = 1.422, p = 0.840). 
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Experiment 3 

 The results of experiment 2 suggest that listeners can dynamically update, retrieve, and 

apply separate generative models for speech categorization even in the face of trial-by-trial talker 

variability in speech input. In experiment 3, we provide an even stricter test of this hypothesis by 

holding the critical fricative acoustics constant across talkers. 

 For interpreting the results of experiments 1 and 2, as is standard in this domain, we 

conclude that learning at test provides evidence that perception of acoustics (at test) has been 

conditioned on lexical context – and, here, talker identity – because of lexically-biased exposure. 

A limitation of this reasoning becomes apparent, however, when categorization includes speech 

from two different talkers; specifically, each step of the two test continua do not share identical 

acoustics. As we described previously, the manipulation used to create Peter’s tokens resulted in 

a shift towards lower frequencies for the critical fricative acoustics in addition to the shift in 

fundamental frequency that was used to cue a male talker. Consequently, different categorization 

patterns may occur for the two talkers simply because of different fricative acoustics. In fact, a 

maximally parsimonious framework should categorize the speech of different talkers differently 

based on these acoustic differences and, indeed, perception of fricative acoustics is highly 

dependent on surrounding fundamental frequency (Johnson, 1991; Munson, 2011). As in Luthra 

et al. (2021), we mitigated this possibility in experiments 1 and 2 by counterbalancing the 

assignment of talker to each bias condition during exposure. However, the strongest test of the 

claim that learning is conditioned on lexical context (and, perhaps, talker) would be to present 

identical fricative acoustics across talkers, which we do in experiment 3. Given the different 

gender manipulation in this experiment, which is cued by a difference in fundamental frequency 

between the two talkers, equating fricative acoustics across talkers provides input that requires 
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fricative identity and lexically guided learning to be conditioned on, at minimum, gender 

identity. Accordingly, examining learning under these conditions provides a strict test of the 

hypothesis that listeners update and retrieve multiple generative models for speech perception. 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the criteria outlined for experiment 1. The sample included 47 

women and 33 men. The mean age of the sample was 27 years (SD = 5 years). Two additional 

participants were tested but excluded from analyses according to preregistered exclusion criteria 

including failure to pass the headphone screen (n = 1) and exhibiting a flat response function at 

test (n = 1). Participants were randomly assigned to either the 1x dose (n = 40) or 2x dose (n = 

40) condition. 

Stimuli. Stimuli for Joanne were identical to those used in experiments 1 and 2. Stimuli 

for Peter had one crucial difference. Specifically, while the non-fricative portions of all items 

were submitted to the Change Gender function as described in experiment 1, the fricatives were 

left unchanged. As shown in Figure 1, this resulted in fricative acoustics that were identical 

between the two talkers while still preserving source characteristics consistent with different 

gender talkers. To our ears, Peter’s stimuli in experiment 3 were extremely difficult to 

perceptually discriminate from Peter’s stimuli in experiments 1 and 2. 

Procedure. The procedure was identical to that described for experiment 2; stimuli from 

the two talkers were interleaved at both exposure and test. 

Results 

Performance was analyzed as outlined for experiment 1. Proportion correct talker 

identification during exposure was near ceiling (mean = 0.99, SD = 0.02, range = 0.84 – 1.00). 
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Aggregate performance at test is shown in Figure 2. Visual inspection suggests a relatively weak 

learning effect in both dose conditions (compared to the learning effects observed in experiments 

1 and 2), which appears to be slightly stronger in the 2x compared to the 1x dose condition. 

The full results of the models for each dose condition are shown in Table 2. For the 1x 

dose condition, the main effect of bias was not statistically significant (𝛽̂𝛽 = 1.022, SE = 0.540, z 

= 1.892, p = 0.058). However, there was a significant interaction between bias and continuum 

step (𝛽̂𝛽 = -0.849, SE = 0.413, z = 2.056, p = 0.040), suggesting that the learning effect may be 

present at some but not all continuum steps. For the 2x dose condition, modest evidence for the 

main effect of bias was observed (𝛽̂𝛽 = 1.243, SE = 0.626, z = 1.987, p = 0.047). 

As shown in Table 3, when data from both dose conditions were examined together, a 

main effect of bias was observed (𝛽̂𝛽 = 1.121, SE = 0.415, z = 2.697, p = 0.007). Though the p-

value suggests a more robust effect compared to the individual dose models, we note that the 

magnitude of the effect (as quantified by the beta estimate) remains modest, consistent with the 

results of the individual dose models. There was no reliable interaction between talker bias and 

dose (𝛽̂𝛽 = 0.408, SE = 0.799, z = 0.511, p = 0.610) nor between talker bias, dose, and continuum 

step (𝛽̂𝛽 = -0.027, SE = 0.558, z = -0.048, p = 0.962), providing no evidence that magnitude of the 

learning effect varied as a function of exposure dose. A likelihood ratio test showed no 

significant change in goodness of fit between the omnibus model and a simpler model in which 

dose was removed as a fixed effect (𝜒𝜒(4) = 1.124, p = 0.891). 

Experiment 4 

 Collectively, the results of experiments 1 – 3 demonstrate that listeners can 

simultaneously learn and retrieve generative models for multiple talkers, even in the face of trial-

by-trial talker variability at test, and even when the to-be-learned acoustics are identical across 
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the two talkers. In these experiments, as in (to our knowledge) every other examination of mixed 

talker learning in this domain, the two talkers differed in gender. Though the results of 

experiments 1 – 3 are necessary to conclude that listeners engage in talker-specific perceptual 

learning, they are not sufficient given that using talkers of different genders introduces a 

confound between talker and gender. Indeed, the belief-updating framework under consideration 

here and invoked in Luthra et al. (2021) posits a hierarchy of generative models that may be used 

to guide adaptation, including language-specific models, gender-specific models, and talker-

specific models. 

 The goal of experiments 4 – 6, which parallel experiments 1 – 3 as shown in Table 1, is 

to provide a critical test of talker-specific perceptual learning by presenting listeners with talkers 

who have perceptually distinct voices yet share the same gender. If learning is talker-specific, 

then the results of experiments 4 – 6 should yield the same patterns observed for experiments 1 – 

3. A failure to observe the same learning patterns for talkers with perceptually distinct voices of 

the same gender would suggest that learning is linked to gender-specific instead of talker-

specific models. 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the criteria outlined for experiment 1. The sample included 42 

women and 38 men. The mean age of the sample was 29 years (SD = 5 years). Four additional 

participants were tested but excluded from analyses according to preregistered exclusion criteria 

including failure to pass the headphone screen (n = 1) and exhibiting a flat response function at 

test (n = 3). Participants were randomly assigned to either the 1x dose (n = 40) or 2x dose (n = 

40) condition. 
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Stimuli. Stimuli for Joanne were identical to those of experiment 1. To create stimuli for a 

second female talker, referred to as Sheila, Joanne’s stimuli were digitally manipulated using the 

Praat Vocal Toolkit (Corretge, n.d.). Specifically, a formant shift ratio of 0.8 was applied to 

simulate a change in vocal tract size, median pitch was set to 180 Hz to indicate a different sound 

source, and pitch variation was reduced by 10% to simulate different prosody. As for Peter’s 

stimuli, stimulus duration was not altered. Perceptually, this process yielded tokens that cued a 

female talker with a voice that was perceptually distinct from Joanne. 

Figure 3 displays two acoustic measurements for Joanne and Sheila’s stimuli including 

fundamental frequency of the voiced portion of each token and center of gravity of the fricative 

portion of each token. Measurements were conducted as outlined for experiment 1. As can be 

viewed in Figure 3, (1) fundamental frequency was higher for Joanne compared to Sheila, (2) for 

both talkers, center of gravity for the clear variants is lower for /ʃ/ compared to /s/, and (3) center 

of gravity for the ambiguous variants falls intermediate to the clear variants. Figure 3 also shows 

that the digital signal manipulation used to change the sound source introduced a scaling of 

center of gravity in line with the change in fundamental frequency. Specifically, center of gravity 

for Sheila’s tokens is shifted towards slightly lower frequencies compared to Joanne’s tokens, 

yielding stimuli in which spectral characteristics for the critical /s/ and /ʃ/ energy in the tokens is 

not equated across talkers. 

Procedure. The procedure was identical to that described for experiment 1, with the 

exception that Sheila’s tokens were used in place of Peter’s tokens. Accordingly, listeners heard 

tokens from Joanne and Sheila interleaved during the exposure phase, with the test phase 

blocked by talker. 

Results 
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Performance was analyzed as outlined for experiment 1. Proportion correct talker 

identification during exposure was near ceiling (mean = 1.00, SD = 0.01, range = 0.96 – 1.00). 

Ceiling performance for talker identification during exposure confirms that the signal 

manipulation used to create Sheila’s stimuli was sufficient to cue a perceptually distinct talker 

from Joanne. 

Aggregate performance at test is shown in Figure 4. Visual inspection suggests no robust 

learning effect for either dose condition. This pattern was confirmed by GLMMs conducted for 

each dose condition. As shown in Table 4, no significant effect of talker bias was observed in 

either dose condition (1x: 𝛽̂𝛽 = 0.198, SE = 0.446, z = 0.443, p = 0.658; 2x: 𝛽̂𝛽 = 0.770, SE = 0.420, 

z = 1.832, p = 0.067). When data from both dose conditions were analyzed together, as reported 

in Table 5, no effect of talker bias was observed (𝛽̂𝛽 = 0.502, SE = 0.305, z = 1.643, p = 0.100), 

consistent with the results of the individual models for each dose condition. Moreover, there was 

no reliable interaction between talker bias and dose (𝛽̂𝛽 = 0.419, SE = 0.520, z = 0.806, p = 

0.420), suggesting that learning did not vary as a function of exposure dose. Compared to a 

model that only included continuum step as a fixed effect, likelihood ratio tests did show a 

significant improvement in goodness of fit when bias was added to the model (𝜒𝜒(2) = 7.223, p = 

0.027), but no further improvement was observed when dose was additionally added to the 

model (𝜒𝜒(4) = 3.744, p = 0.442). 

Experiment 5 

The results of experiment 4 provide no strong evidence of learning; though bias did 

improve model fit compared to a model that only predicted asi responses by continuum step, the 

bias effect was not significant either in the omnibus model or in the models that analyzed 

performance for each dose separately. These results are consistent with the interpretation that 
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listeners adapt by updating gender-specific, and not talker-specific, models. That is, listeners 

may have updated a single model, linked to gender, that encompassed exposure from both 

women heard during exposure. Because lexical information differentially biased perception of 

the ambiguous fricative for each talker, linking the exposure input to a single model would result 

in no learning because of hearing the ambiguity in both biasing contexts. Indeed, Tzeng et al. 

(2021) observed no learning in a single talker condition in which listeners heard the talker 

produce the ambiguity in both biasing contexts, demonstrating that learning is linked to the 

consistency of the biasing input. 

As described in the introduction, blocking the test phase by talker introduces a memory-

based confound between talkers because the time between exposure and test cannot be held 

constant across talkers. In experiment 5, we examine whether learning for same gender talkers 

will emerge when speech from the two talkers is interleaved during exposure and test. If 

perceptual learning reflects updating of gender-specific models, as suggested by the results of 

experiment 4, then no learning will be observed in experiment 5. In contrast, evidence of 

learning in experiment 5 would suggest that listeners can maintain talker-specific models under 

specific circumstances, thus pointing to constraints on learning for same gender talkers. 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the criteria outlined for experiment 1. The sample included 44 

women and 36 men. The mean age of the sample was 27 years (SD = 5 years). Two additional 

participants were tested but excluded from analyses according to preregistered exclusion criteria 

including failure to pass the headphone screen (n = 1) and exhibiting a flat response function at 

test (n = 1). Participants were randomly assigned to either the 1x dose (n = 40) or 2x dose (n = 
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40) condition. 

Stimuli. The stimuli were identical to those used in experiment 4. 

Procedure. The procedure was identical to that used in experiment 2, with the exception 

that Sheila’s tokens were used in place of Peter’s tokens. Specifically, Joanne and Sheila’s 

tokens were interleaved at both exposure and test. 

Results 

Performance was analyzed as outlined for experiment 1. Proportion correct talker 

identification during exposure was near ceiling (mean = 0.99, SD = 0.01, range = 0.92 – 1.00). 

Aggregate performance at test is shown in Figure 4. Visual inspection suggests a learning effect 

reflecting more asi responses for the /s/-bias talker compared to the /ʃ/-bias talker. No effect of 

dose is visually apparent. 

GLMMs for each dose condition (Table 4) confirmed a significant effect of talker bias in 

each of the 1x dose (𝛽̂𝛽 = 1.442, SE = 0.428, z = 3.369, p = 0.001) and 2x dose (𝛽̂𝛽 = 1.041, SE = 

0.434, z = 2.399, p = 0.016) conditions. As shown in Table 5, a main effect of talker bias was 

also observed when data from the two dose conditions were analyzed together in a single model; 

however, no significant interaction between talker bias and dose (𝛽̂𝛽 = 0.148, SE = 0.533, z = 

0.277, p = 0.782) or between talker bias, dose, and continuum step (𝛽̂𝛽 = -0.391, SE = 0.390, z = -

1.003, p = 0.316) was observed. Furthermore, a likelihood ratio test showed no significant 

change in goodness of fit between the omnibus model and a simpler model in which dose was 

removed as a fixed effect (𝜒𝜒(4) = 1.654, p = 0.799). 

Experiment 6 

The results of experiment 5 suggest that listeners can update and retrieve talker-specific 

generative models given that learning was observed for two talkers who were members of the 
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same sociophonetic class (here, gender). However, in context of the null learning effect observed 

in experiment 4, the results of experiment 5 suggest that maintaining distinct models for same 

gender talkers may be more fragile than maintaining distinct models for different gender talkers, 

a point we elaborate on further in the discussion. Experiment 6 provides an additional test of 

talker-specificity for same gender talkers, following the manipulation of experiment 3 in which 

the critical fricative acoustics are held constant between the two talkers. 

Methods 

Participants. Participants (n = 80) were recruited from the Prolific participant pool (Palan 

& Schitter, 2018) according to the criteria outlined for experiment 1. The sample included 47 

women, 32 men, and one participant who declined to report gender. The mean age of the sample 

was 26 years (SD = 5 years). Three additional participants were tested but excluded from 

analyses according to preregistered exclusion criteria including failure to pass the headphone 

screen (n = 1) and exhibiting a flat response function at test (n = 2). Participants were randomly 

assigned to either the 1x dose (n = 40) or 2x dose (n = 40) condition. 

Stimuli. The stimuli for Joanne were identical to those used in all previous experiments. 

Stimuli for Sheila had one crucial difference. Specifically, while the non-fricative portions of all 

items were modified as described for experiment 4, the fricatives were left unchanged. As shown 

in Figure 3, this resulted in fricative acoustics that were identical between the two talkers while 

still preserving source characteristics consistent with two female talkers. To our ears, Sheila’s 

stimuli for experiment 6 were extremely difficult to perceptually discriminate from Sheila’s 

stimuli for experiments 4 and 5, though Sheila’s stimuli were readily discriminable from 

Joanne’s stimuli in all cases. 

Procedure. The procedure was identical to that described for experiment 5; stimuli for the 
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two talkers were interleaved at both exposure and test. 

Results 

Performance was analyzed as outlined for experiment 1. Proportion correct talker 

identification during exposure was near ceiling (mean = 0.99, SD = 0.01; range = 0.94 = 1.00). 

Aggregate performance at test is shown in Figure 4. Visual inspection suggests a minimal 

learning effect that appears to be slightly stronger in the 2x compared to the 1x dose condition. 

The results of the GLMM for each dose condition are shown in Table 4. The effect of talker bias 

was not significant in the 1x dose condition (𝛽̂𝛽 = 0.319, SE = 0.405, z = 0.787, p = 0.431) but it 

did meet threshold for statistical significance in the 2x dose condition (𝛽̂𝛽 = 0.904, SE = 0.451, z = 

2.005, p = 0.045). The results of the GLMM aggregating across dose conditions is shown in 

Table 5. A modest effect of talker bias was observed (𝛽̂𝛽 = 0.592, SE = 0.300, z = 1.973, p = 

0.048), reflecting more asi responses for the /s/-bias talker compared to the /ʃ/-bias talker. 

Neither the interaction between talker bias and dose (𝛽̂𝛽 = 0.267, SE = 0.580, z = 0.460, p = 

0.646) nor the interaction between talker bias, dose, and continuum step (𝛽̂𝛽 = 0.246, SE = 0.467, 

z = 527, p = 0.598) was reliable, and a likelihood ratio test showed no significant change in 

goodness of fit between the omnibus model and a simpler model in which dose was removed as a 

fixed effect (𝜒𝜒(4) = 3.125, p = 0.537).2 

                                                 
2 In keeping with best practices for promoting reproducibility of research, we have reported all 
experiments conducted for this project in the main text except one, which we report in this 
footnote. Selective reporting of experiments in the scientific literature (e.g., running numerous 
experiments around a central hypothesis and selectively reporting only the ones that “worked”) is 
a questionable, and, unfortunately, common research practice (John et al., 2012) that contributes 
to reduced reproducibility of research by eliminating important context needed to interpret 
reported findings in the scientific literature and because versions that “worked” may reflect false 
positives in the context of multiple related studies that did not yield reliable effects (Greenwald, 
1975; Open Science Collaboration, 2015; Pashler & Wagenmakers, 2012). In addition to the six 
experiments reported in the main text, we ran one pilot experiment that was identical to 
experiment 1 except that the test phase included two additional tokens for each talker’s 
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Effect sizes across experiments 

 Learning in the lexically guided perceptual learning paradigm is often considered as a 

binary outcome (e.g., learning occurs or it does not occur, Luthra et al., 2021); however, a 

growing body of evidence suggests that lexically guided perceptual learning may be more 

optimally characterized as a graded outcome that is linked to characteristics of the specific 

acoustic input presented during exposure (Drouin et al., 2016; Tzeng et al., 2021). Though 

linking learning to the specific spectral patterns presented during exposure is beyond the scope of 

the current work, Figure 5 shows the learning effect sizes for 11 lexically guided perceptual 

learning studies, including the six experiments presented here, the four interleaved exposure 

experiments in Luthra et al. (2021), and experiment 1A from Tzeng et al. (2021). We provide 

this effect size comparison to promote consideration of learning as a graded outcome that may 

vary across stimulus sets, which is an important avenue for future research. Recall that Joanne’s 

stimuli were identical to those used in Tzeng et al. (2021), which also used the standard lexically 

guided perceptual learning paradigm (i.e., listeners were only exposed to one talker and learning 

was assessed as a between-subjects effect, with different listeners exposed to either Joanne’s /s/-

bias or /ʃ/-bias stimuli). 

Visual inspection of Figure 5 shows wide variability in effect sizes between the current 

experiments and those of Luthra et al. (2021), especially for the 1x dose condition. As we discuss 

further in the discussion section, the weak learning magnitude in the 1x dose conditions of 

Luthra et al. (2021) may explain, at least in part, why the current experiments failed to replicate 

                                                 
continuum, one near each of the continuum endpoints. The same pattern of results was observed 
in the pilot experiment as was observed for experiment 1. Based on the results of the pilot 
experiment, we decided to narrow the range of the test continuum to better sample perception in 
the more intermediate region where learning was predicted to occur, as described for the six 
experiments presented in the main text. 
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the finding that simultaneously adapting to multiple talkers requires additional exposure beyond 

the standard exposure dose. Numerically, the magnitude of the learning effect is in most cases 

larger for the different gender experiments (experiments 1 – 3) compared to the same gender 

experiments (experiments 4 – 6) in the current work. Of note, the magnitude of the learning 

effect for some of the mixed talker experiments presented here falls comfortably in the 

confidence interval of the effect size observed in Tzeng et al., suggesting that under some 

circumstances, simultaneously adapting to two talkers can lead to learning of a similar magnitude 

as adapting to a single talker. Visual inspection of Figure 5 also suggests that the magnitude of 

the learning effect was not constant even among conditions that held talker gender constant 

during exposure. For example, the magnitude of the learning effect for the 1x dose conditions is 

larger in experiments 1 and 2 compared to experiment 3; though all three of these experiments 

presented talkers of different genders during exposure. In the following sections, we describe a 

series of exploratory analyses that formally examined the magnitude of the learning effect across 

the six experiments reported in this manuscript. 

Exploratory analysis: Comparing learning within gender conditions  

A set of analyses was conducted to compare the magnitude of the learning effect across 

experiments 1 – 3 (the different gender experiments) and, separately, across experiments 4 – 6 

(the same gender experiments). We explicitly note that these analyses should be considered 

exploratory given that the sample size was not planned to detect potential interactions between 

learning and experiment. We present the full exposition of these analyses in the Supplementary 

Material and summarize the key findings here in the main text. 

Different gender experiments 

We first examined learning across experiments separately for each dose. For the 1x dose 
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condition, a significant effect of bias was observed (𝛽̂𝛽 = 1.854, SE = 0.310, z = 5.979, p < 0.001), 

but there was no strong evidence to suggest that the magnitude of the bias effect differed 

between experiments 1 and 2 (𝛽̂𝛽 = -0.375, SE = 0.698, z = -0.538, p = 0.591) or between 

experiments 2 and 3 (𝛽̂𝛽 = -0.998, SE = 0.663, z = -1.506, p = 0.132). The same pattern held for 

the 2x dose condition, which showed a reliable effect of bias (𝛽̂𝛽 = 1.491, SE = 0.326, z = 4.569, p 

< 0.001) but no significant interaction between bias and experiment for either the experiment 1 

versus experiment 2 contrast (𝛽̂𝛽 = 0.696, SE = 0.758, z = 0.917, p = 0.359) or the experiment 2 

versus experiment 3 contrast (𝛽̂𝛽 = -0.550, SE = 0.739, z = -0.743, p = 0.457). The same pattern 

held when data from both dose conditions were analyzed together (p ≥ 0.117 in both cases). 

Same gender experiments 

The same procedure was used to compare the magnitude of the learning effect across 

experiments 4 – 6. For both the 1x and 2x dose conditions, there was a significant effect of bias 

(1x: 𝛽̂𝛽 = 0.642, SE = 0.243, z = 2.648, p = 0.008; 2x: 𝛽̂𝛽 = 0.899, SE = 0.265, z = 3.395, p = 

0.001), but no robust evidence to suggest that learning differed between experiment 4 and 

experiment 5 or between experiment 5 and experiment 6 (p > 0.106 in all cases). When data from 

both dose conditions were analyzed together, the experiment by bias interaction coefficients 

provide marginal evidence to suggest that learning increased from experiment 4 to experiment 5 

(𝛽̂𝛽 = 0.684, SE = 0.413, z = 1.656, p = 0.098) and decreased from experiment 5 to experiment 6 

(𝛽̂𝛽 = -0.690, SE = 0.395, z = -1.745, p = 0.081). 

Exploratory analysis: Comparing learning across gender conditions 

 The results of the individual experiments suggest that under some circumstances, 

perceptual learning for speech reflects dynamic updating and retrieval of talker-specific 

generative models. Specifically, the results of experiment 5 showed a robust learning effect 
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given exposure to two talkers of the same sociophonetic class (i.e., gender, here). However, 

learning was not observed for the same gender talkers when test was blocked by talker 

(experiment 4). Moreover, visual inspection of Figure 5 suggests that learning effect sizes in the 

same gender experiments (i.e., experiments 4 – 6) are, in general, weaker than the effect sizes 

observed in the different gender experiments (i.e., experiments 1 – 3). To examine whether the 

magnitude of learning differed as a function of exposure to different gender versus same gender 

talkers, exploratory analyses were conducted to compare learning between parallel experiments 

(i.e., experiment 1 vs. experiment 4, experiment 2 vs. experiment 5, experiment 3 vs. experiment 

6). The full exposition of these analyses is provided in the Supplementary Material; we 

summarize the key findings here. 

For the 1x dose conditions, there was a significant interaction between gender match and 

bias when test was blocked by talkers (𝛽̂𝛽 = -1.775, SE = 0.533, z = -3.330, p = 0.001), indicating 

a larger learning effect when the two exposure talkers differed in gender (experiment 1) 

compared to when they were the same gender (experiment 4). The interaction between gender 

match and bias was not reliable when comparing experiment 2 to experiment 5, nor when 

comparing experiment 3 to experiment 6 (p > 0.106 in both cases). For the 2x dose conditions, 

no significant interactions between gender match and bias were observed (p > 0.388 in all cases). 

When data from both dose conditions were analyzed together, there was a significant interaction 

between gender match and bias only when test was blocked by talker (i.e., learning was larger in 

experiment 1 compared to experiment 4; 𝛽̂𝛽 = -1.047, SE = 0.415, z = -2.524, p = 0.012), 

consistent with the results of the individual dose models. 

Exploratory analysis: Reaction time at test 

As described in the introduction, previous research suggests a processing cost associated 
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with simultaneous adaptation to multiple talkers (Luthra et al., 2021). The evidence used to 

support this conclusion reflected a null learning effect (i.e., no significant effect of lexical bias) 

when interleaved exposure to two talkers’ speech consisted of the standard exposure dose, and a 

significant learning effect when dose was doubled. Though a significant interaction between 

learning and dose was not observed in this study, this pattern of results is broadly consistent with 

the conclusion that twice as much exposure is required for learning to occur given interleaved 

compared to blocked mixed talker exposure (Luthra et al., 2021). However, the exact locus of 

this processing cost is unknown, and it was not replicated in the current experiments. 

Based on research suggesting that mixed talker input results in increased processing time 

compared to single talker input due to disruptions in auditory attention (e.g., Choi & Perrachione, 

2019) and the need for talker normalization (Saltzman et al., 2021), we performed an exploratory 

analysis on reaction time at test, capitalizing on the manipulations of the current study that 

included both blocked and interleaved test. Given that we did not find any evidence interleaved 

exposure impeded the emergence of the learning effect, nor any evidence that exposure dose 

impacted learning, the goal of this analysis was to help elucidate the nature of a processing cost, 

if any, associated with interleaved test. 

To visualize RT, mean RT was first calculated for each participant, collapsing across all 

test trials. Grand means for each experiment were then calculated over by-subject means 

separately for the two dose conditions. Figure 6 shows mean RT in each experiment separately 

for each dose. Visual inspection suggests two patterns. First, RTs between the dose conditions 

for a given experiment show minimal difference. Second, RTs show a monotonic increase in line 

with increased talker variability and increased conditioning of phonetic variation on talker. That 

is, for each gender match condition, mean RT is slower in when test was interleaved across 
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talkers (experiment 2, experiment 5) compared to when test was blocked by talker (experiment 1, 

experiment 4). This increase in RT is consistent with previous research demonstrating slower 

processing time in mixed talker compared to single talker input (e.g., Choi & Perrachione, 2019; 

Magnuson & Nusbaum, 2007; Saltzman et al., 2021; Stilp & Theodore, 2020). When test was 

interleaved and the fricative acoustics were held constant across talkers, RTs slow even further. 

Because experiments 2 and 3 (and the parallel same gender examinations, experiments 5 and 6) 

both used interleaved test, increased RTs here may reflect increased computational complexity in 

resolving phonetic identity given identical fricative acoustics across talkers. 

To examine these patterns statistically, trial-level raw RTs were submitted to a 

generalized linear mixed effects model with the Gamma response family and an identity link 

function following recommendations of Lo and Andrews (Lo & Andrews, 2015). The model 

structures were parallel and included fixed effects of gender match, dose, experiment, and their 

interactions. Gender match (different gender = -0.5, same gender = 0.5) and dose (1x = -0.5, 2x = 

0.5) were sum-coded. Experiment was entered into the model as two sliding contrasts, one that 

compared blocked test (experiments 1 and 4) to interleaved test (experiments 2 and 5; E1/E4 = -

2/3, E2/E5 = 1/3, E3/E6 = 1/3), and one that compared interleaved test when fricative acoustics 

differed between talkers (experiments 2 and 5) to interleaved test when fricatives acoustics were 

held constant between talkers (experiments 3 and 6; E1/E4 = -1/3, E2/E5 = -1/3, E3/E6 = 2/3). 

The random effects structure consisted of random intercepts by subject and random intercepts by 

continuum step. The results of this model are shown in Table 6. Reaction time significantly 

increased from blocked test to interleaved test (𝛽̂𝛽 = 48.160, SE = 17.623, z = 2.733, p = 0.006) 

and between the two interleaved test manipulations (𝛽̂𝛽 = 56.881, SE = 17.741, z = 3.206, p = 

0.001). No other main effects or interactions were reliable, including the main effect of gender 
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match condition (p ≥ 0.114 in all cases). 

Discussion 

The current investigation examined listeners’ ability to simultaneously learn multiple 

talkers’ idiolects. In each of six experiments, listeners were exposed to the speech of two talkers, 

with productions from the two talkers randomly interleaved during exposure. Lexical context 

was used to bias listeners to perceive an ambiguous fricative as /s/ for one talker and /ʃ/ for the 

other talker. During exposure, listeners completed a talker identification task. Talker 

identification accuracy for all experiments was near ceiling, confirming that listeners perceived 

the speech as being produced by two different talkers. Following exposure, listeners categorized 

tokens drawn from two ashi – asi continua, one for each talker. The manipulations within and 

across the six experiments were designed to inform four facets of perceptual learning for 

multiple talkers, including (1) flexibility in updating and applying talker-specific models, (2) 

gender- versus talker-specificity, (3) necessity of conditioning perception of acoustics on a 

talker, and (4) perceptual costs associated with simultaneous maintenance of multiple models. 

While experiment 1 blocked the categorization test by talker, experiment 2 interleaved 

test tokens randomly across talkers, potentially requiring more frequent shifts in the models used 

to inform categorization. Experiment 3 additionally manipulated the acoustics of input such that 

the fricatives of the two talkers were physically identical across talkers. The second set of 

experiments (experiments 4 – 6) mirrored experiments 1 – 3 except to present listeners with 

talkers of the same gender during exposure. Finally, all six experiments examined learning as a 

function of two exposure doses to provide a replication of the reported perceptual cost of 

simultaneously updating multiple talker-specific models (Luthra et al., 2021). The implications 

of the results for each of these manipulations towards a theory of perceptual learning for multiple 
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talkers are discussed in turn, below. 

 As reviewed in the introduction, the extant literature provides mixed evidence as to the 

specificity of perceptual learning given exposure to a single talker’s idiosyncratic productions, 

with generalization to a novel talker observed in some cases but not in others (Eisner & 

McQueen, 2005; Tamminga, et al., 2020; Kraljic & Samuel, 2005). More consistent support for 

talker-specific learning comes from investigations of mixed talker listening environments 

(Kraljic & Samuel, 2007; Luthra, et al., 2021), including the results of the current work. Because 

past research consistently blocked test by talker, even when exposure was provided to multiple 

talkers, it did not examine listeners’ ability to dynamically retrieve talker-specific models. 

Indeed, an inherent consequence of context-specific versus a more parsimonious representational 

structure is the necessity to change which model is being used each time the source input 

changes. The results of the current experiments demonstrate that trial-by-trial talker variability is 

not a constraint on model retrieval. Learning was observed in experiments 2 and 5 (and, perhaps, 

to a lesser extent, experiments 3 and 6), which interleaved talkers’ speech at test. These findings 

suggest a perceptual system that can dynamically shift between different generative models on a 

trial-by-trial basis. This is crucially orthogonal to the question of talker-specific adaptation in 

single-talker environments; a mechanism without dynamic switching capability could be forced 

to generalize across talkers in mixed talker environments regardless of its specificity in single 

talker contexts.    

Between-talker similarity has been implicated both theoretically and empirically as a 

determinant of generalization across talkers (Kraljic & Samuel, 2005; Kleinschmidt & Jaeger, 

2015). Specifically, if within-talker variability of individual talkers outweighs between-talker 

differences, then there is no predicted gain to maintaining talker-specific models. As a reductio 
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ad absurdum, consider two talkers who are indexically distinct but whose phonetic patterns are 

identical – even the most specific of perceptual mechanisms should generalize between these 

talkers. While encountering such a pair of talkers is highly unlikely, a more moderate corollary is 

indeed quite common – talkers who share a salient indexical trait, in our case gender, and who 

therefore are acoustically less distinct than talkers of different genders. In the current work, 

talker-specific learning was observed for both different gender and same gender talkers. 

However, learning for different gender talkers was more robust than for same gender talkers 

given that it was maintained in the face of blocked test in the former but not the latter. This is 

perhaps explained by an interleaved test phase highlighting between-talker differences, as these 

differences are encountered on a trial-by-trial basis given interleaved test. Blocked test 

(experiments 1 and 4), in contrast, may make between-talker differences less salient, leading the 

system to generalize rather than maintain talker-specific learning. Though the magnitude of the 

learning effect (as indexed by the beta estimates for the fixed effect of bias in the regression 

models, shown in Figure 5) were numerically lower for the same gender experiments 

(experiments 4 – 6) compared to their different gender counterparts (experiments 1 – 3), the only 

case in which robust evidence of attenuated learning for same compared to different gender 

talkers was observed was when test was blocked by talker. 

The current results are consistent with a theory that predicts interleaved experience as 

more conducive to learning. While a priori hypotheses focused on dynamically shifting between 

models as a potentially costly process, a less obvious benefit of frequent shifting is that each 

model is retrieved more often. Regular reactivation may offset the possibility of memory decay; 

one is unlikely to forget a model in frequent use. If memory decay is indeed a risk in mixed 

talker learning conditions, then frequent activation of talker-specific models can be viewed as 
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conducive to learning. On the one hand, previous research has shown that given exposure to a 

single talker, learning is robust to both time (i.e., it persists 12 hours after exposure) and 

exposure to speech from other talkers (Eisner & McQueen, 2006; Kraljic & Samuel, 2005). On 

the other hand, previous research has shown that given exposure to a single talker, learning is 

attenuated even in the course of a single test phase, presumably reflecting distributional learning 

that occurs given exposure to the test stimuli themselves (Giovannone & Theodore, 2021; Liu & 

Jaeger, 2018, 2019; Tzeng et al., 2021). Future research is needed not only to reconcile these 

disparate results for single talker learning, but also to integrate findings on single talker learning 

environments with those of mixed talker learning environments. Moreover, future research is 

needed to determine if the current results generalize to mixed talker environments with more 

than two talkers. 

In the current work, as in the broader lexically guided perceptual learning domain, 

evidence for learning is measured by a difference in categorization at test following lexically 

biased exposure. When different continua are used to assess learning, as must occur to some 

degree when learning is assessed for multiple talkers, it is important to consider an alternative 

explanation for differences in categorization between test continua, which is that they may reflect 

differences in the acoustics of the test continua, orthogonal to specificity of learning. We sought 

to mitigate this possibility in several ways. First, following Luthra et al. (2021), talkers were 

counterbalanced across biasing conditions in each experiment. Additionally, experiment 3 and 

experiment 6 eliminated acoustic differences between the fricatives of the two talkers by using 

the same physical fricatives for both talkers. Crucially, this was not designed to facilitate 

identical response functions between the talkers, given that between-talker differences in 

fundamental frequency both heavily condition perception of fricative identity (Johnson, 1991; 
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Munson, 2011) and were necessary in our experiments to perceptually cue two different talkers 

during exposure. Rather, by using identical fricatives, we provided a more robust test of the 

guiding framework, which is that differences in categorization manifest from differences in 

conditional interpretation of the input based on talker-specific patterns. Based on the results of 

the individual experiments, learning does appear to be challenged when fricative acoustics were 

identical across talkers. As shown in Tables 3 and 5 (and Figure 5), the magnitude of the bias 

effect in experiment 2 (𝛽𝛽 = 2.031, p < 0.001) is approximately twice the magnitude of the bias 

effect in experiment 3 (𝛽𝛽 = 1.121, p = 0.007). Likewise, the magnitude of the bias effect in 

experiment 5 is (𝛽𝛽 = 1.221, p < 0.001) is approximately twice the magnitude of the bias effect in 

experiment 6 (𝛽𝛽 = 0.592, p = 0.048). These results suggest that learning may have been 

diminished when fricatives were identical between talkers (experiments 3 and 6) compared to 

when they were allowed to exhibit more natural variation (experiments 2 and 5), though we note 

that the exploratory analyses that compared learning across experiments (reported in full in the 

Supplementary Material) provided no strong evidence for these interactions. 

Luthra et al. (2021) describe a perceptual cost to learning the distributions of two talkers 

simultaneously; namely, that twice as much exposure is required for mixed talker compared to 

single talker learning. Seeking to replicate this cost, the six experiments reported here examined 

learning for both a standard exposure dose (20 ambiguous exposures in lexically biasing contexts 

for each talker) and for twice the standard exposure dose (40 ambiguous exposures in lexically 

biasing contexts for each talker). None of the six experiments found strong evidence to suggest 

that learning was influenced by exposure dose. Here we consider three potential explanations for 

why we did not replicate this processing cost. First, the exact dose in Luthra et al. (2021) was 16 

or 32 critical exposures for each talker in the 1x and 2x dose conditions, respectively. It may be 
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the case that the additional four exposures provided in the current 1x dose conditions were 

sufficient to overcome the processing cost observed in Luthra et al. (2021). Presumably – even 

for single talker environments – there is a relationship between exposure dose and learning. 

Indeed, Tzeng et al. (2021) found that the magnitude of learning for a single talker was larger 

given 20 compared to 10 critical exposures. The ideal adapter framework invoked here 

hypothesizes an influence of exposure dose for adaptation; namely, this framework predicts that 

evidence from a given talker must be sufficiently deviant to trigger the updating of an existing 

generative model and that initial evidence of a deviation is weighted more strongly than 

subsequent evidence that conforms to the deviation (Kleinschmidt & Jaeger, 2015). On this view, 

a difference between 16 and 20 critical exposures may in principle lead to different model 

beliefs, which would in turn impact observed learning. A fruitful avenue for future research 

would be to test these predictions more explicitly by parametrically manipulating exposure dose 

and number of exposure talkers at a fine grain. 

Second, the disparate results between Luthra et al. (2021) and the current work may 

reflect differences in the specific stimuli used to elicit and measure learning. Informal reports 

suggest that learning in the lexically guided perceptual learning paradigm shows wide variability 

across stimulus sets. As shown in Figure 5, the magnitude of learning across stimulus sets used 

in the current work and Luthra et al. (2021) shows wide variability. Specifically, the effect size 

of the learning effect in the single dose conditions of Luthra et al. (2021) are relatively small 

compared to those of the current investigation. This could be indicative of stimuli that are more 

difficult for listeners to learn from and thus generate talker-specific models for, and therefore 

yield a potential specific situation in which additional exposure is beneficial. That is, if aspects 

of the stimuli are not conducive to strong learning in general, then learning may be more 



44 
 

sensitive to task-based changes. Future research is needed to better explicate the relationship 

between exposure (and test) acoustics and subsequent learning, including examining whether the 

patterns observed here generalize to other phonological contrasts, which could potentially be 

used to explain the different learning magnitude elicited across different stimulus sets in the 

lexically guided perceptual learning domain. That there is no apparent cost of interleaving input 

from the two talkers in exposure in the current work converges with the lack of a cost found in 

our results for interleaved versus blocked talker input at test. Collectively, the current findings 

indicate that listeners can dynamically shift between talker-specific models without requiring 

additional exposure to simultaneously learn two talkers’ idiosyncratic speech patterns and 

without an attenuation of learning given trial-by-trial talker variability at test. The current 

investigation is of course limited in that we did not include any manipulations where the 

exposure phase was blocked by talker, and therefore cannot make strong claims as to the 

potential role of interleaved exposure for our specific stimuli. 

Third, we may not have observed robust statistical evidence for an influence of exposure 

dose on learning because our experiments may have been underpowered to detect an interaction 

of this magnitude. Designing the current experiments to have power to detect this interaction was 

challenged because the bias by dose interaction was not statistically reliable in Luthra et al. 

(2021). A priori power analyses are generally conducted to detect effect sizes that meet threshold 

for statistically significance; that is, null effects generally do not meet criteria for an effect size of 

interest. Accordingly, the sample size for the current experiments was set to detect an effect of 

bias of the magnitude observed in Luthra et al. in the experiments where learning was reported 

(that also yielded power to detect a bias by dose interaction of the magnitude observed in Tzeng 

et al. for single talker exposure), and we analyzed performance for each dose condition 
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separately (in addition to testing for the bias by dose interactions). However, we did conduct a 

power analysis based on the magnitude of the (null) bias by dose interaction observed in Luthra 

et al. (2021) using the same simulation procedure described for the power analysis reported in 

experiment 1. The results showed that 512 participants, 256 in each dose condition, would be 

required to have adequate power (82%) to detect an interaction of that magnitude. Though the 

sample size in the current experiments (n = 40 in each between-subject condition) is slightly 

higher than the sample size in Luthra et al. (n = 32), both sample sizes are far below the sample 

size indicated by the power analysis. An informal analysis of more than 100 previous studies in 

the standard lexically guided perceptual learning literature revealed wide variability in sample 

sizes, including as a few as 12 subjects (e.g., Drouin et al., 2016; Mitterer & Reinisch, 2013; 

Myers & Mesite, 2014) to a maximum of 63 subjects in each between-subjects condition (Nelson 

& Durvasula, 2021), with an approximate mean sample size of 26 subjects (SD = 12 subjects; 

median = 24 subjects) in each between-subjects condition. One way to interpret the sample size 

convention in this domain is that it reflects what the field has collectively determined to be an 

effect size “of interest,” consistent with the convention to assess learning outcomes under 

specific, individual experimental situations. As the field moves to consider learning as a graded 

instead of a binary outcome (e.g., Tzeng et al., 2021), future investigations may require more 

explicit specification of effect sizes of interest and a revision to the sample size convention in 

this domain to ensure that experiments are adequately powered to detect explicitly identified 

effect sizes of interest. Though conducting informative, appropriate power analyses has been a 

longstanding challenge for research in general, widespread availability of open access data 

combined with new tools for conducting power analyses (e.g., Green & MacLeod, 2016) 

mitigates some of the traditional challenges in conducting a priori power analyses. We note that 



46 
 

code to reproduce the power analyses presented in this manuscript is available on the OSF 

repository for this manuscript (https://osf.io/x4yeq/); this code is heavily commented to promote 

its reuse. 

Though we find no evidence of a processing cost for mixed talker exposure in terms of 

dose required to support learning or the magnitude of the learning effect, we did observe 

systematic increases in the processing time for phonetic categorization at test; processing time 

increased as a function of both increased talker variability (i.e., single vs. mixed talkers) and 

increased conditioning of phonetic variation on talker, as shown in Figure 6. This pattern of 

processing time is in line with accounts of the role of auditory attention (Choi & Perrachione, 

2019; Kapadia & Perrachione, 2020) and talker normalization (Magnuson et al., 2021; 

Magnuson & Nusbaum, 2007; Saltzman et al., 2021) on phonetic identification. These accounts 

may interact with each other to the extent that if frequent changes in talker disrupt auditory 

attention, then this could in turn reduce resources available for resource-demanding, talker-

specific computations that bring talker identity and phonetic information into alignment for 

speech sound categorization. Specifically, increased processing time when the talkers’ speech 

was interleaved at test compared to when test was blocked by talker is predicted by both auditory 

attention and talker normalization frameworks because of trial-by-trial talker variability in the 

former but not the latter. The further increase in processing time when acoustics were held 

constant across talkers could be accommodated by the contextual tuning theory of talker 

normalization. Phonetic constancy across talkers predicts slowed processing if the time to 

compute a talker-specific mapping is graded to reflect increased challenge in aligning talker and 

phonetic information over identical compared to distinct phonetic cues. 

Finally, the current results provide insight towards further specification of the ideal 

https://osf.io/x4yeq/
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adapter framework (Kleinschmidt & Jaeger, 2015), which has increasingly been invoked as an 

explanatory theory for speech adaptation (Clayards et al., 2008; Giovannone & Theodore, 2021; 

Kleinschmidt, 2019; Kleinschmidt et al., 2015; Kleinschmidt & Jaeger, 2016; Luthra et al., 2021; 

Saltzman & Myers, 2021; Theodore et al., 2019; Theodore & Monto, 2019; Tzeng et al., 2021; 

Xie et al., 2018, 2021). Consistent with this framework, the current results found evidence that 

listeners can, in some circumstances, maintain distinct generative models for individual speakers. 

In its current instantiation, the ideal observer framework remains agnostic regarding potential 

processing costs incurred by switching the between generative models on successive utterances. 

The current findings support a framework where such a cost is not evident. If anything, the 

current results show that simultaneous learning of multiple talkers, at least when they are of the 

same gender, is facilitated by their speech being interleaved in time, necessitating frequent model 

switching. The ideal adapter framework additionally posits that learning should be conditioned 

heavily on the “situation” in which input occurs, which predicts equally robust learning when 

fricative acoustics are held identical between talkers compared to when they vary across talkers, 

provided that the talkers themselves (i.e., the “situation” in this framework) can be discriminated. 

That is, identical acoustics in different situations should not necessarily be more difficult to learn 

than different acoustics in different situations according to the ideal adapter framework. 

However, our findings suggest that learning for multiple talkers may be attenuated when fricative 

acoustics are held constant between talkers, suggesting that the ideal adapter framework may 

need refinement to account for the current results. 

Conclusions 

The present study informs theories of perceptual learning in mixed talker listening 

environments. Consistent with previous research, we observed evidence of a learning mechanism 
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that is capable of simultaneously updating multiple generative models. Extending past research, 

we found evidence that (1) listeners can dynamically apply talker-specific models for speech 

categorization when faced with trial-by-trial talker variability in speech input, (2) frequent 

changes to model retrieval do not attenuate learning, (3) simultaneously updating talker-specific 

models for multiple talkers does not require increased exposure, and (4) between-talker 

similarity, including a shared identical trait, may under some circumstances constrain talker-

specific learning. The current results collectively suggest that perceptual learning for speech is 

achieved via a mechanism that represents a context-dependent, cumulative integration of 

experience with speech input and can dynamically apply different generative models in mixed 

talker listening environments. 
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Table 1. Key manipulations across the six experiments. Stimuli for the two talkers was 
interleaved during exposure for all experiments. Across experiments, we manipulated whether 
gender of the two talkers was different or was the same. Within each of the talker gender 
manipulations, we manipulated whether test was blocked by talker or interleaved across talkers, 
and whether talker acoustics varied across talkers or were identical across talkers. 

Experiment Exposure Talker gender Test Talker acoustics 
1 Interleaved Different Blocked Vary across talkers 
2 Interleaved Different Interleaved Vary across talkers 
3 Interleaved Different Interleaved Identical across talkers 
4 Interleaved Same Blocked Vary across talkers 
5 Interleaved Same Interleaved Vary across talkers 
6 Interleaved Same Interleaved Identical across talkers 
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Table 2. Results of the generalized linear mixed effects models examining learning within each 
dose condition for each of the three different gender experiments (experiments 1 – 3). 

Experiment Dose Fixed effect 𝜷𝜷� SE z p 
1 1x (Intercept) -2.847 0.389 -7.323 < 0.001 
  Step 4.876 0.393 12.409 < 0.001 
  Bias 2.218 0.501 4.428 < 0.001 
  Step x Bias -1.430 0.623 -2.293 0.022 
 2x (Intercept) -2.550 0.261 -9.774 < 0.001 
  Step 4.831 0.317 15.217 < 0.001 
  Bias 1.463 0.609 2.402 0.016 
  Step x Bias -0.962 0.644 -1.495 0.135 
2 1x (Intercept) -2.492 0.309 -8.050 < 0.001 
  Step 4.979 0.401 12.420 < 0.001 
  Bias 2.246 0.529 4.243 < 0.001 
  Step x Bias -1.136 0.628 -1.809 0.070 
 2x (Intercept) -2.184 0.256 -8.544 < 0.001 
  Step 4.400 0.303 14.543 < 0.001 
  Bias 1.944 0.483 4.020 < 0.001 
  Step x Bias -0.176 0.541 -0.325 0.745 
3 1x (Intercept) -1.129 0.246 -4.585 < 0.001 
  Step 3.148 0.229 13.755 < 0.001 
  Bias 1.022 0.540 1.892 0.058 
  Step x Bias -0.849 0.413 -2.056 0.040 
 2x (Intercept) -1.276 0.269 -4.740 < 0.001 
  Step 3.321 0.221 15.038 < 0.001 
  Bias 1.243 0.626 1.987 0.047 
  Step x Bias -0.340 0.483 -0.704 0.481 
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Table 3. Results of the generalized linear mixed effects model examining learning between dose 
conditions for each of the three different gender experiments (experiments 1 – 3). 

Experiment Fixed effect 𝜷𝜷� SE z p 
1 (Intercept) -2.692 0.231 -11.632 < 0.001 
 Step 4.851 0.248 19.537 < 0.001 
 Bias 1.802 0.391 4.613 < 0.001 
 Dose 0.202 0.418 0.484 0.628 
 Step x Bias -1.137 0.443 -2.570 0.010 
 Step x Dose 0.088 0.405 0.216 0.829 
 Bias x Dose -1.061 0.665 -1.595 0.111 
 Step x Bias x Dose 1.126 0.652 1.727 0.084 
2 (Intercept) -2.311 0.196 -11.771 < 0.001 
 Step 4.641 0.241 19.265 < 0.001 
 Bias 2.031 0.351 5.793 < 0.001 
 Dose 0.154 0.356 0.434 0.665 
 Step x Bias -0.551 0.400 -1.375 0.169 
 Step x Dose -0.231 0.404 -0.571 0.568 
 Bias x Dose 0.092 0.614 0.150 0.881 
 Step x Bias x Dose 0.339 0.588 0.576 0.564 
3 (Intercept) -1.198 0.184 -6.526 < 0.001 
 Step 3.227 0.162 19.869 < 0.001 
 Bias 1.121 0.415 2.697 0.007 
 Dose -0.128 0.348 -0.366 0.714 
 Step x Bias -0.591 0.320 -1.846 0.065 
 Step x Dose 0.143 0.288 0.496 0.620 
 Bias x Dose 0.408 0.799 0.511 0.610 
 Step x Bias x Dose -0.027 0.558 -0.048 0.962 
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Table 4. Results of the generalized linear mixed effects models examining learning within each 
dose condition for each of the three same gender experiments (experiments 4 – 6). 

Experiment Dose Fixed effect 𝜷𝜷� SE z p 
4 1x (Intercept) -2.618 0.251 -10.450 < 0.001 
  Step 5.162 0.382 13.510 < 0.001 
  Bias 0.198 0.446 0.443 0.658 
  Step x Bias 0.983 0.770 1.275 0.202 
 2x (Intercept) -2.151 0.287 -7.491 < 0.001 
  Step 4.612 0.353 13.053 < 0.001 
  Bias 0.770 0.420 1.832 0.067 
  Step x Bias -0.397 0.490 -0.810 0.418 
5 1x (Intercept) -1.640 0.251 -6.542 < 0.001 
  Step 4.179 0.310 13.497 < 0.001 
  Bias 1.442 0.428 3.369 0.001 
  Step x Bias -0.669 0.431 -1.552 0.121 
 2x (Intercept) -1.812 0.301 -6.015 < 0.001 
  Step 4.148 0.296 14.013 < 0.001 
  Bias 1.041 0.434 2.399 0.016 
  Step x Bias -0.368 0.427 -0.861 0.389 
6 1x (Intercept) -0.932 0.218 -4.277 < 0.001 
  Step 3.123 0.241 12.976 < 0.001 
  Bias 0.319 0.405 0.787 0.431 
  Step x Bias -0.364 0.350 -1.041 0.298 
 2x (Intercept) -1.085 0.239 -4.541 < 0.001 
  Step 3.132 0.244 12.852 < 0.001 
  Bias 0.904 0.451 2.005 0.045 
  Step x Bias -0.497 0.432 -1.151 0.250 
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Table 5. Results of the generalized linear mixed effects model examining learning between dose 
conditions for each of the three same gender experiments (experiments 4 – 6). 

Experiment Fixed effect 𝜷𝜷� SE z p 
4 (Intercept) -2.393 0.194 -12.363 < 0.001 
 Step 4.882 0.259 18.823 < 0.001 
 Bias 0.502 0.305 1.643 0.100 
 Dose 0.475 0.355 1.341 0.180 
 Step x Bias 0.233 0.447 0.522 0.602 
 Step x Dose -0.440 0.433 -1.016 0.310 
 Bias x Dose 0.419 0.520 0.806 0.420 
 Step x Bias x Dose -0.754 0.668 -1.128 0.259 
5 (Intercept) -1.722 0.192 -8.991 < 0.001 
 Step 4.165 0.216 19.273 < 0.001 
 Bias 1.221 0.300 4.072 < 0.001 
 Dose -0.199 0.365 -0.544 0.586 
 Step x Bias -0.496 0.299 -1.656 0.098 
 Step x Dose -0.065 0.384 -0.170 0.865 
 Bias x Dose 0.148 0.533 0.277 0.782 
 Step x Bias x Dose -0.391 0.390 -1.003 0.316 
6 (Intercept) -0.999 0.161 -6.207 < 0.001 
 Step 3.117 0.169 18.407 < 0.001 
 Bias 0.592 0.300 1.973 0.048 
 Dose -0.112 0.312 -0.358 0.720 
 Step x Bias -0.417 0.272 -1.534 0.125 
 Step x Dose -0.093 0.313 -0.296 0.767 
 Bias x Dose 0.267 0.580 0.460 0.646 
 Step x Bias x Dose 0.246 0.467 0.527 0.598 
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Table 6. Results of the generalized linear mixed effects model for reaction time at test. 
Fixed effect 𝜷𝜷� SE z p 
(Intercept) 629.773 12.608 49.951 0.000 
Gender 22.816 14.440 1.580 0.114 
E1/E4 – E2/E5 48.160 17.623 2.733 0.006 
E2/E5 – E3/E6 56.881 17.741 3.206 0.001 
Dose -1.920 14.440 -0.133 0.894 
Gender x E1/E4 – E2/E5 44.621 35.247 1.266 0.206 
Gender x E2/E5 – E3/E6 -7.648 35.482 -0.216 0.829 
Gender x Dose -14.628 28.879 -0.507 0.612 
E1/E4 – E2/E5 x Dose 14.553 35.247 0.413 0.680 
E2/E5 – E3/E6 x Dose -33.751 35.482 -0.951 0.341 
Gender x E1/E4 – E2/E5 x Dose -93.591 70.494 -1.328 0.184 
Gender x E2/E5 – E3/E6 x Dose -19.972 70.965 -0.281 0.778 
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Figure 1. Acoustic characteristics of the stimuli used in the different gender experiments 
(experiments 1 – 3). Points in black connected by a line indicate test tokens; all other points 
indicate exposure tokens. As described in the main text, fundamental frequency was measured 
for the voiced portion of each token and center of gravity was measured for the fricative portion 
of each token. 
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Figure 2. Mean proportion asi responses as a function of continuum step, talker bias, and dose 
for the different gender experiments, which included experiment 1 (E1), experiment 2 (E2), and 
experiment 3 (E3). As described in the main text, talker bias was manipulated within subjects, 
with exposure stimuli selected to differentially bias listeners to perceive ambiguous variants as 
/s/ for one talker and /ʃ/ for the other talker. Dose was manipulated between subjects. Continuum 
step is presented in terms of percent /s/ energy in each step of the test continuum. Means reflect 
grand means calculated over by-subject means; error bars indicate standard error of the mean. 
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Figure 3. Acoustic characteristics of the stimuli used in the same gender experiments 
(experiments 4 – 6). Points in black connected by a line indicate test tokens; all other points 
indicate exposure tokens. As described in the main text, fundamental frequency was measured 
for the voiced portion of each token and center of gravity was measured for the fricative portion 
of each token. 
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Figure 4. Mean proportion asi responses as a function of continuum step, talker bias, and dose 
for the same gender experiments, which included experiment 4 (E4), experiment 5 (E5), and 
experiment 6 (E6). As described in the main text, talker bias was manipulated within subjects, 
with exposure stimuli selected to differentially bias listeners to perceive ambiguous variants as 
/s/ for one talker and /ʃ/ for the other talker. Dose was manipulated between subjects. Continuum 
step is presented in terms of percent /s/ energy in each step of the test continuum. Means reflect 
grand means calculated over by-subject means; error bars indicate standard error of the mean. 
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Figure 5. Learning effect sizes across the experiments reported here and those in Luthra et al. 
(2021, labeled LMM in this figure). Effect size is represented by the beta estimate for the fixed 
effect of bias in each regression model; error bars show the 95% confidence interval. A beta 
estimate of zero corresponds to no learning. The region shown in gray reflects the 95% 
confidence interval of the learning effect size in experiment 1A of Tzeng et al. (2021), which 
used the same stimuli as the f1 talker in the current work and the standard learning paradigm in 
which listeners only heard one talker during exposure (and test), with bias manipulated between-
subjects. 
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Figure 6. Mean reaction time in milliseconds (ms) for each experiment and each dose condition. 
Error bars indicate standard error of the mean. 

 
 


