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Abstract 

There is wide variability in the acoustic patterns that are produced for a given linguistic 

message, including variability that is conditioned on who is speaking. Listeners solve this lack of 

invariance problem, at least in part, by dynamically modifying the mapping to speech sounds in 

response to structured variation in the input. Here we test a primary tenet of the ideal adapter 

framework of speech adaptation, which posits that perceptual learning reflects the incremental 

updating of cue-sound mappings to incorporate observed evidence with prior beliefs. Our 

investigation draws on the influential lexically guided perceptual learning paradigm. During an 

exposure phase, listeners heard a talker who produced fricative energy ambiguous between /ʃ/ 

and /s/. Lexical context differentially biased interpretation of the ambiguity as either /s/ or /ʃ/, 

and, across two behavioral experiments (n = 500), we manipulated the quantity of evidence and 

the consistency of evidence that was provided during exposure. Following exposure, listeners 

categorized tokens from an ashi – asi continuum to assess learning. The ideal adapter framework 

was formalized through computational simulations, which predicted that learning would be 

graded to reflect the quantity, but not the consistency, of the exposure input. These predictions 

were upheld in human listeners; the magnitude of the learning effect monotonically increased 

given exposure to four, 10, or 20 critical productions, and there was no evidence that learning 

differed given consistent versus inconsistent exposure. These results (1) provide support for a 

primary tenet of the ideal adapter framework, (2) establish quantity of evidence as a key 

determinant of adaptation in human listeners, and (3) provide critical evidence that lexically 

guided perceptual learning is not a binary outcome. In doing so, the current work provides 

foundational knowledge to support theoretical advances that consider perceptual learning as a 

graded outcome that is tightly linked to input statistics in the speech stream. 
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1. INTRODUCTION 

Speech perception is not static; rather, listeners dynamically modify the mapping between 

acoustic-phonetic cues and speech sound representations to reflect structured regularities in 

speech input. This flexibility helps listeners solve the lack of invariance problem for speech 

perception, which arises because many different acoustic patterns are produced for a given 

speech sound. A primary source of variability in speech input is who is speaking. Talker 

differences in speech production arise from many sources, including physiological (e.g., age, 

sex), sociophonetic (e.g., dialect, gender, social group), and even idiosyncratic characteristics 

(Allen et al., 2003; Byrd, 1992; Chodroff & Wilson, 2017, 2018; Fant, 1973; Hillenbrand et al., 

1995; Johnson & Beckman, 1997; Klatt, 1986; Munson, 2011; Newman et al., 2001; Peterson & 

Barney, 1952; Theodore et al., 2009). While not the only source of variability in speech input, 

talker differences represent a primary contribution towards the lack of invariance between 

acoustic patterns in the input and an intended linguistic message. 

Explicating a theoretical account of how listeners resolve lack of invariance problem is a 

longstanding challenge in speech perception research (e.g., Liberman et al., 1957, 1967). Many 

findings implicate adaptation as a necessary component of such a theory (e.g., Heffner et al., 

2022; Idemaru & Holt, 2020; Kleinschmidt & Jaeger, 2015; McMurray & Jongman, 2011; Norris 

et al., 2003; Theodore & Monto, 2019; Tzeng et al., 2021). Rigid, invariant classification models 

for speech are unable to achieve similar accuracy to human listeners (McMurray & Jongman, 

2011), while models that instead allow malleability in perception based on context – such as who 

is speaking – have more success in predicting human responses (Chodroff & Wilson, 2017; 

Cummings & Theodore, 2022; Kleinschmidt & Jaeger, 2015; Kluender et al., 2019; Luthra et al., 

2021; McMurray & Jongman, 2011; Theodore et al., 2019; Theodore & Miller, 2010; Theodore 
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& Monto, 2019). Indeed, a rich evidence base suggests that listeners constantly adapt to 

structured variation in speech input (Bradlow & Bent, 2008; Cummings & Theodore, 2022; 

Drouin et al., 2016, 2016; Giovannone & Theodore, 2021; Idemaru & Holt, 2020; Luthra et al., 

2021; Norris et al., 2003; Nygaard et al., 1995; Nygaard & Lunders, 2002; Samuel & Kraljic, 

2009; Sidaras et al., 2009; Theodore & Miller, 2010; Theodore & Monto, 2019; Tzeng et al., 

2021; Weatherholtz & Jaeger, 2016; Xie et al., 2018). Theoretical accounts of speech perception, 

including their computational instantiations, stand to benefit from a marriage with behavioral 

evidence of adaptation in speech perception (Kleinschmidt & Jaeger, 2015). 

 The ideal adapter framework for speech adaptation (Kleinschmidt & Jaeger, 2015) aims 

to provide a unifying account of perceptual learning for speech. In this framework, speech 

sounds are represented as generative distributions of acoustic-phonetic cues formed by long-term 

experience with the cue-sound mappings of a given language. This framework assumes that 

talkers’ output consists of samples from these distributions, and perception is the result of 

inferring these distributions given listeners’ beliefs of cue-sound mappings. Adaptation is the 

consequence of updating prior beliefs by integrating observed evidence with existing priors. 

Computationally, this theory is implemented in a Bayesian belief-updating model. Initial input 

from a novel talker is processed based on prior knowledge (e.g., knowledge of language- or 

gender-specific cue distributions). Learning reflects the updating of a category-specific 

distribution to integrate observed evidence with the prior distribution, weighted by confidence in 

prior beliefs. The output is posterior distribution beliefs about category means and covariances, 

reflecting the likelihood of the prior distribution (e.g., formed by global experience) given the 

observed evidence (e.g., from the specific talker). Iterative updating is predicted to occur until a 

change in statistics occurs, which may be triggered by a change in context (e.g., a new talker). 



5 

 

Thus, this framework predicts that learning reflects context-dependent (e.g., talker-specific), 

cumulative integration of listeners’ experience with speech input in that context (Kleinschmidt & 

Jaeger, 2015). This framework has been proposed to explain both distributional learning, 

reflecting listeners’ unsupervised sensitivity to statistical regularities in speech (e.g., Idemaru & 

Holt, 2014; Liu & Holt, 2015; McMurray et al., 2009; Theodore et al., 2019; Theodore & Monto, 

2019), and supervised learning, where lexical context and other disambiguating cues directly 

guide incorporation of ambiguous phonetic variants into existing speech sound categories (e.g., 

Bertelson et al., 2003; Drouin & Theodore, 2018; Keetels et al., 2016; Norris et al., 2003; 

Samuel & Kraljic, 2009; Tzeng et al., 2021) 

 A core tenet of the ideal adapter framework is that learning is incremental. Iterative 

integration of new evidence with existing priors yields the prediction of incremental changes in 

category-specific representations. For example, upon encountering a single production of the 

phoneme /s/ from a novel talker, this framework predicts that perception will be achieved by 

mapping the production to a category based on expectations of cue-category mappings formed 

over extensive prior experience with the /s/ category. In a case where the /s/ was atypical (e.g., 

exhibiting a lower spectral center than would be expected given the novel talker’s physiological 

and social characteristics), this single production may be insufficient to meaningfully shift a 

listener’s category-specific expectations for /s/ because this model gives more weight to 

globally-derived prior knowledge compared to a single token from a novel talker. And indeed, it 

may seem anecdotally intuitive for human responses not to rely too heavily on a single point of 

evidence. However, this framework predicts that repeated observation of the atypical /s/ should 

incrementally shift listeners expectations for this talker in line with increased evidence of an 

atypical cue-category mapping. This process is predicted to continue until the listener’s posterior 
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beliefs capture the talker’s pronunciation well enough that further exposure does not yield further 

change in expectations. The prediction that the extent of learning should be graded to reflect the 

extent of evidence falls out of this line of reasoning and is formalized in the ideal adapter 

framework for speech adaptation. 

 The overarching goal of the present study is to examine whether this tenet of the ideal 

adapter framework – graded learning as a function of observed evidence – is realized in human 

behavior. To do so, we use the highly influential lexically guided perceptual learning paradigm, 

(e.g., Norris et al., 2003; Samuel & Kraljic, 2009) which has recently been linked to predictions 

made by the ideal adapter framework (Cummings & Theodore, 2022; Liu & Jaeger, 2018, 2019; 

Luthra et al., 2021; Saltzman & Myers, 2021; Tzeng et al., 2021). In standard form, the lexically 

guided perceptual learning paradigm requires listeners to complete a lexical decision exposure 

task followed by a phonetic identification test task. During exposure, listeners hear speech from a 

single talker wherein canonical sounds are replaced with acoustic energy that is perceptually 

ambiguous between two speech sounds. A supervisory signal is provided in the form of lexical 

context because the ambiguous sound is embedded in items that map to a real word referent only 

if the ambiguous sound is interpreted as one specific category (Ganong, 1980). For example, 

replacing the canonical /s/ in personal with ambiguous spectral energy between /s/ and /ʃ/ allows 

lexical context to guide listeners to interpret ambiguity as /s/ because personal is an English 

word (but pershonal is not). Likewise, replacing the canonical /ʃ/ in publisher with the 

ambiguous spectral energy guides interpretation of the ambiguity as /ʃ/ because publisher is a 

real word (but publiser is not). Lexical bias is manipulated between subjects, which allows 

listeners in each bias group to differentially build expectations for the exposure talker. At test, 

listeners categorize stimuli drawn from a continuum that spans the categories manipulated during 
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exposure (e.g., tokens from an ashi to asi continuum). Evidence of learning manifests as a 

difference in performance between the two biasing groups at test, indicating that listeners 

modified the mapping between acoustics and meaning in line with lexical bias during exposure 

(e.g., more asi responses for listeners in the /s/-bias compared to the /ʃ/-bias exposure group). 

 To date, most research in the lexically guided perceptual learning paradigm has focused 

on identifying the conditions that are necessary for learning to occur, with learning most often 

defined as a measurable difference in perception between listeners groups who received 

differential biasing exposure. Results from this line of investigation have been fruitful in 

elucidating requisite conditions for learning (Drouin & Theodore, 2018; Norris et al., 2003). For 

example, listeners must be able to attribute the to-be-learned ambiguity to the speaker, given that 

learning does not occur when the ambiguity can be attributed to an incidental cause, such as a 

pen in the talker’s mouth (Kraljic et al., 2008; Kraljic & Samuel, 2011; Liu & Jaeger, 2018). In 

addition, though a lexical decision task is most often used during exposure (e.g., Norris et al., 

2003), the learning effect is robust across tasks including passive listening (Jesse, 2021), talker 

identification (Luthra et al., 2021), syllable and trial counting (McQueen et al., 2006; Samuel, 

2016), visual dot monitoring (van Linden & Vroomen, 2007), and amplitude identification 

(Drouin & Theodore, 2018). Consistent with the goal of identifying necessary conditions for 

learning, outcomes of learning in this domain are most often considered as a binary result – does 

any learning occur, or not? – with relatively limited consideration of the magnitude of learning 

that arises from lexically-guided exposure (cf. Cummings & Theodore, 2022; Tzeng et al., 2021). 

Visual inspection of the results in the lexically guided perceptual learning literature 

suggests wide heterogeneity in the magnitude of the learning effect, which potentially reflects 

numerous methodological differences across the extant literature. One such difference with direct 
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implications for the ideal adapter framework is the exposure dose – that is, the quantity of 

evidence that listeners receive. In the standard paradigm, exposure dose consists of 20 critical 

productions (Kraljic et al., 2008; Norris et al., 2003), though may other doses have been used, 

including two (Liu & Jaeger, 2018), six (Liu & Jaeger, 2018), 10 (Samuel, 2016; Schuhmann, 

2012), 11 (Reinisch & Mitterer, 2016), 16 (Liu & Jaeger, 2018; Zheng & Samuel, 2020), 17 

(Nelson & Durvasula, 2021), or 40 (Mitterer et al., 2013; Scharenborg & Janse, 2013) critical 

productions. Though both exposure dose and the magnitude of the learning effect vary widely in 

the existing literature, few investigations to date have specifically examined the influence of dose 

on learning, and those that have do not provide optimal tests of the incremental learning 

predicted by the ideal adapter framework. 

For example, Tzeng et al. (2021) examined the relationship between perceptual learning 

and consistency in exposure input. In their experiment 1, listeners completed the standard 

lexically guided perceptual learning paradigm and thus received exposure to 20 ambiguous 

productions in a disambiguating lexical context. In their experiment 2, listeners heard 20 

productions of the biased category, but only 10 of the productions contained an ambiguous 

fricative, with the other 10 consisting of canonical productions. Learning was observed in both 

experiments; moreover, a significant interaction was observed reflecting a larger learning effect 

given 20 compared to 10 ambiguous exposures. Though Tzeng et al. (2021) provides compelling 

evidence in support of graded learning outcomes, their experiment 2 simultaneously manipulated 

both quantity and consistency of exposure relative to the standard 20 dose condition. Thus, 

diminished learning could reflect either or both factors, and disambiguation between these 

hypotheses requires a stricter test of the effects of each in isolation.  

Liu and Jaeger (2018) examined learning for exposure doses of two, six, 10, and 16 
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critical exposures (referred to as causally unambiguous exposures in their experiments 3b, 2b, 1a, 

and 2a, respectively). The primary analyses tested for a significant learning effect in each dose 

separately (consistent with the convention to consider learning outcomes as a binary), which 

showed a statistically significant learning effect for dose conditions of six, 10, and 16 exposures, 

but not for the dose condition of two exposures. Post-hoc comparisons across the dose conditions 

revealed no significant difference in learning between the six, 10, and 16 exposure dose 

conditions even though a positive numeric association between dose and learning was observed, 

which may reflect insufficient power to detect these differences given that the study was not 

designed to test this hypothesis specifically.  

In an investigation of lexically guided perceptual learning for multiple talkers, Luthra et 

al. (2021) observed no significant learning effect given exposure to 16 critical productions but 

did observe learning following exposure to 32 critical productions. Though no significant 

interaction between learning and exposure dose was observed, Luthra et al. (2021) concluded 

that 16 exposures is not sufficient to promote learning, consistent with the convention to consider 

learning as a binary outcome. In an extension of this study, Cummings and Theodore (2022) 

found evidence of perceptual learning for multiple talkers with exposure doses of both 20 and 40 

critical productions, and – as in Luthra et al. (2021) – found no evidence of an interaction 

between dose and learning. This finding was interpreted as a ceiling effect on learning consistent 

with 20 exposures providing sufficient evidence to fully accommodate the atypical production. 

Though the ideal adapter framework has been invoked as a potential explanatory theory 

for numerous findings in the speech perception literature (e.g., Liu & Jaeger, 2019; Luthra et al., 

2021; Saltzman & Myers, 2021; Theodore et al., 2019; Theodore & Monto, 2019; Tzeng et al., 

2021), it is often invoked in general terms – what might be considered a “verbal theory” (van 
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Rooij & Blokpoel, 2020) – instead of drawing on its formal computational architecture. As 

outlined in Kleinschmidt and Jaeger (2015), what this framework predicts is neither generic nor 

absolute – instead, specific predictions from this framework are contingent on numerous 

assumptions (e.g., how listeners represent speech sounds, prior knowledge of speech sound 

representations, how confident the system is in its prior knowledge) and specific aspects of the 

to-be-explained behavior (e.g., the degree to which input deviates from prior expectations, the 

amount of evidence a listener receives). To preview some of the results from computational 

simulations for the current investigation (reported below), even an iterative learning algorithm 

that reflects a cumulative integration of observed evidence can yield predictions that would 

suggest a binary account of adaptation (e.g., learning requires some critical number of exposures) 

if, for example, confidence in prior knowledge is very high. Likewise, an iterative learning 

algorithm can also yield the prediction that no behavioral change will be observed if, for 

example, the novel input is perfectly in line with prior expectations. Though a “verbal theory” 

level engagement with this theory is not without merit, it fails to capitalize on the computational 

instantiation of the ideal observer framework, which can provide specific, fine-grained 

predictions for human behavior. Additionally – and critically – invocation at the level of a verbal 

theory often fails to clarify researcher assumptions that are critical for linking observed behavior 

to the ideal adapter framework.  

In this context, the goal of the current work is two-fold. First, we aimed to test a primary 

tenet of the ideal adapter framework, which states that adaptation is incremental to reflect the 

quantity of evidence in the input (Kleinschmidt & Jaeger, 2015). Second, we aimed to test 

whether adaptation also reflects consistency of evidence in the input (Tzeng et al., 2021). To do 

so, we first present a series of computational simulations using the ideal adapter framework in 
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order to be explicit in the assumptions guiding our test of this framework and to generate fine-

grained predictions for human behavior (Kleinschmidt, 2017; Kleinschmidt & Jaeger, 2015, 

2016; Theodore & Monto, 2019). We then test whether the predicted influence of exposure 

quantity (experiment 1) and exposure consistency (experiment 2) on adaptation is observed in 

human listeners. 

2. MODEL SIMULATIONS 

Simulations were implemented using the beliefupdatr (Kleinschmidt, 2017) and 

slopeExtractR (Monto, 2018) packages in R. All code to reproduce the simulations reported here 

is available on the Open Science Framework (OSF) repository for this manuscript: 

https://osf.io/zkbng/. In this model, prior specifications consist of the mean and variance of two 

categories (/ʃ/ and /s/) along with a confidence parameter that estimates the number of direct 

observations of the prior specification. The model input is trial-by-trial observations of an 

acoustic-phonetic parameter (e.g., spectral center) and the response category (e.g., /s/ or /ʃ/). 

Using this input, the learning algorithm (explicated fully in Kleinschmidt and Jaeger, 2015) 

updates the category-specific distributions on each trial by integrating the observed evidence 

(i.e., the spectral center and response) with the prior distribution, weighted by confidence. For 

each trial, the output is the posterior distribution given the observed evidence. The algorithm is 

iterative at each trial and thus simulates how beliefs change over time given new evidence. Using 

this model, we performed two sets of simulations, one that examined adaptation as a function of 

the quantity of the exposure and one that examined adaptation as a function of the consistency of 

the exposure. The only difference between the quantity and consistency simulation procedures is 

that the consistency simulations presented the system with inconsistent evidence of a talker’s 

phonetic implementation of the biased phonetic category whereas the quantity simulations 
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provided consistent evidence of “ambiguous” production of the biased phonetic category. Each is 

described in turn, below. 

2.1. Quantity simulations 

Our procedure (1) simulated input in the standard lexically guided perceptual learning 

paradigm in which listeners hear clear variants of one category and ambiguous variants of a 

different category and (2) simulated a different quantity of evidence across four dose conditions. 

We implemented this procedure as follows. First, prior specifications were set to reflect a 

“typical talker” based on acoustic data for the /ʃ/-/s/ contrast provided in Newman et al. (2001). 

Specifically, mean spectral center was set to 5200 Hz for /ʃ/ (SD = 87 Hz) and 5700 Hz for /s/ 

(SD = 87 Hz), as shown in Figure 1, panel C. Second, we generated 400 lists (each simulating a 

Figure 1. Input for the quantity simulations. Panel A shows the exposure input for each bias by 
dose condition. Panel B shows the test input, which was constant across all bias by dose 
conditions. Panel C shows the prior specifications for all simulations. 
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unique listener) specifying trial-level spectral center and corresponding response category, 

reflecting 100 lists for each of four dose conditions, reflecting one (1x), four (4x), 10 (10x), or 20 

(20x) critical exposures to an atypical production. In each of six experiments, Cummings and 

Theodore (2022) found no evidence that learning differed given exposure to 20 vs. 40 critical 

exposures, consistent with 20 exposures being sufficient to achieve a ceiling learning effect. 

Accordingly, the doses examined in the current work sample doses where the quantity of 

exposure is hypothesized to yield a measurable effect on learning outcomes. All lists consisted of 

exposure input followed by test input. Within each dose condition, 50 lists simulated /s/-bias 

exposure and 50 lists simulated /ʃ/-bias exposure. The only difference among the 50 lists within 

each bias by dose condition was the order in which trial-level observations were presented in 

each phase; each list consisted of a separate random order of the exposure input followed by a 

separate random order of the test input to simulate 50 unique subjects in each cell. As shown in 

Figure 1, panel A, exposure input in each list consisted of equal numbers of /s/ and /ʃ/ 

observations for a given dose. For example, the 1x dose lists contained two exposure trials (one 

/s/ and one /ʃ/ observation) and the 4x dose lists contained eight exposure trials (four /s/ and four 

/ʃ/ observations). For all dose conditions, trial-level input specified the acoustic-phonetic 

parameter for the clear category to match the prior mean of the respective category (5200 Hz for 

/s/, 5700 Hz for /s/) and the acoustic-phonetic parameter for the ambiguous category to the 

midpoint frequency between the two categories (5450 Hz). Figure 1, panel A also shows that the 

exposure input simulated perfect acceptance of the ambiguous input as the intended category. To 

make this procedure more concrete, consider the simulated exposure input for the 4x dose, /s/-

bias condition. Trial-level observations contained four observations of 5200 Hz labeled as /ʃ/, 

reflecting four observations of the /ʃ/ category that were perfectly in line with prior expectations. 



14 

 

Trial-level observations also contained four observations of 5450 Hz labeled as /s/, which 

simulates four observations in which lexical context led to a successful map between the 

midpoint spectral center and the /s/ category. Now consider the simulated exposure input for the 

4x dose, /ʃ/-bias condition. The trial-level observations here included four observations of 5700 

Hz labeled as /s/ and four observations of 5450 Hz labeled as /ʃ/. Accordingly, the evidence 

simulated four observations in which the /s/ category perfectly aligned with prior expectations 

and four observations in which lexical context led to a successful map between the midpoint 

spectral center and the /ʃ/ category.  

Following the exposure input, each list contained 90 observations that simulated test 

input. As shown in Figure 1, panel B, these 90 observations were constant across all dose and 

bias conditions and reflected 10 observations of nine test steps. Spectral center of the test steps 

spanned the range of spectral center frequencies in the prior specifications and was set to 

simulate the sampling across the /ʃ/-/s/ space of the test continuum that was used in the 

behavioral experiments. Responses for the test input simulated a typical psychometric response 

function. Specifically, responses to steps 1 – 3 and steps 7 – 9 reflected perfect categorization of 

endpoints, responses to the step 5 reflected ambiguous categorization of the continuum midpoint, 

and responses to steps 4 and 6 were intermediate between the midpoint and the corresponding 

endpoint. 

Third, three simulations were performed for these lists, representing three unique 

confidence specifications. In this model, the confidence parameter reflects a pseudo-count of the 

number of observations of the prior specification. The confidence parameter interacts with the 

learning algorithm in that the degree of belief-updating (i.e., the degree to which the priors 

change given new evidence) is influenced by confidence in the priors; lower confidence values 
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yield a system that is more flexible (and thus exhibits relatively strong belief-updating given new 

evidence) while higher confidence values yield a system that is more stable (and thus exhibits 

relatively weak belief-updating given new evidence). The three simulations reflected confidence 

values of 50, 150, and 300, which sample the range of inferred confidence reported in previous 

work. Finally, for each simulation and each list, we (1) extracted the posterior distribution (i.e., 

the updated beliefs) at test trials 9, 45, and 90, (2) calculated the predicted categorization 

function for each of these test trials based on the extracted posterior distribution, and (3) 

extracted the category boundary of each categorization function, defined as the spectral center 

corresponding to 0.5 proportion /s/ responses. The three selected test trials reflect simulated 

performance at the end of the first test cycle (i.e., after one presentation of the nine simulated 

continuum steps), performance at the end of the test phase used in the behavioral experiments 

reported below (i.e., after five cycles of the nine simulated continuum steps), and performance at 

the end of a secondary test phase (i.e., after an additional five cycles of the nine continuum 

steps). Three different trials were selected because belief-updating in this model is iterative 

throughout the entirety of the simulation; that is, the model continues to update beliefs even 

throughout the simulated test phase. As we revisit in the discussion, there is a growing body of 

evidence indicating that the magnitude of the lexically guided perceptual learning effect 

attenuates throughout the test phase (Giovannone & Theodore, 2021; Liu & Jaeger, 2018; Tzeng 

et al., 2021), consistent with adaptation occurring given exposure to the test stimuli themselves. 

The results of the quantity simulations are shown in Figure 2. To streamline the 

exposition, here we present the results of the simulations performed with the confidence level of 

300 (i.e., the highest confidence in the priors and thus the most stable/least flexible system) at 

test trial 45 (i.e., at the end of test phase used in the behavioral experiments of the current work). 
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The results of the simulations for the other test trials and with the other confidence levels are 

presented in full in the Supplementary Material; the qualitative patterns presented here held 

across all confidence specifications and examined trials. Figure 2, panel A shows the extracted 

beliefs (i.e., the posterior distribution) for one simulated subject in each bias by dose condition. 

The prior specification at the start of the simulation is shown in gray. Consider first the beliefs 

for the 20x dose, /s/-bias condition. Compared to the prior specification, the updated belief of the 

/s/ category has shifted to have a slightly lower mean spectral center and, more notably, a wider 

standard deviation. This pattern is consistent with beliefs changing to reflect evidence that an 

“ambiguous” spectral center value is produced for the /s/ category. In contrast, the updated 

beliefs for the /ʃ/ category show minimal change from the prior beliefs, reflecting evidence that 

aligned with prior beliefs. Now consider the beliefs for the 20x, /ʃ/-bias condition. Here the  

Figure 2. Results of the quantity simulations. Panel A shows the updated beliefs for one 
simulated subject in each bias by dose condition in addition to the prior beliefs (in gray). Panel B 
shows the inferred identification function for each set of updated beliefs. Panel C shows the 
mean category boundary as derived from the inferred identification functions across the 50 
simulated subjects in each bias by dose condition; error bars indicate standard error of the mean. 

 



17 

 

updated belief of the /ʃ/ category deviates from prior expectations, with the updated belief 

reflecting a higher mean spectral center and increased variability compared to the prior belief. 

No substantial change to the /s/ belief is observed, consistent with receiving evidence that 

confirmed the prior belief. 

Figure 2, panel B shows the optimal identification function given the updated beliefs for 

the simulated subjects (panel A). There is no displacement between the /s/-bias and /ʃ/-bias 

functions for the 1x dose condition, consistent with shared beliefs for the /s/ and /ʃ/ categories. In 

contrast, displacement is observed for the 4x, 10x, and 20x dose conditions such that the /s/-bias 

function is shifted towards a lower spectral center compared to the /ʃ/-bias function. This pattern 

mimics the key learning effect in lexically guided perceptual learning and demonstrates that this 

effect can be modeled as the consequence of integrating observed evidence with prior beliefs. 

Moreover, the displacement between the /s/- and /ʃ/-bias functions monotonically increases 

across dose conditions, yielding the prediction that the magnitude of the learning effect will be 

positively associated with the quantity of evidence provided during exposure. 

Finally, Figure 2, panel C shows the mean category boundary across all 50 simulated 

subjects in each dose by bias condition. The graded learning effect in line with graded evidence 

(i.e., dose) holds not only for the individual subject simulations presented in Figure 2, panels A 

and B, but also when considering the predicted category boundaries across all 50 simulated 

listeners in each bias by dose condition. Specifically, predicted category boundaries for the /s/-

bias simulations are at a lower center frequency compared to the /ʃ/-bias simulations, and the 

difference in the boundary between the two bias conditions grows as dose increases. 

2.2. Consistency simulations 

 The consistency simulation procedure was identical to the quantity simulation procedure 
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with one key exception; namely, the simulated exposure input presented 20 observations of each 

category. As shown in Figure 3, panel A, this yielded exposure evidence that preserved the dose 

manipulation of the quantity simulations while also presenting the system with inconsistent 

evidence of a talker’s phonetic implementation of the biased phonetic category. As an example, 

consider the input for the 10x dose, /s/-bias condition. The simulated input contained 20 

observations of the 5200 Hz spectral center labeled as /ʃ/, thus simulating 20 observations of this 

category that were perfectly aligned with prior expectations. The input also contained 20 

observations that were labeled as /s/; 10 observations had a spectral center in line with prior 

expectations (5700 Hz) and 10 observations had an ambiguous spectral center based on prior 

expectations (5450 Hz). Accordingly, the quantity of evidence in support of incorporating the  

Figure 3. Input for the consistency simulations. Panel A shows the exposure input for each bias 
by dose condition. Panel B shows the test input, which was constant across all bias by dose 
conditions. Panel C shows the prior specifications for all simulations. 
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ambiguous spectral center into the /s/ category matched the 10x dose condition in the quantity 

simulations, but the global evidence in support of this shift was inconsistent. In the 1x dose 

condition, the input simulated one observation of the ambiguous spectral center along with 19 

observations of the same category that matched the category prior. In the 4x dose condition, the 

input simulated four observations of the ambiguous spectral center along with 16 observations of 

the same category that matched the category prior. The 20x dose condition was included for 

completeness; we note that the input for these simulations was identical to that of the parallel 

quantity simulations. 

The results of the consistency simulations are shown in Figure 4. These results reflect 

simulations performed with the confidence level of 300 at test trial 45. Full results are shown in 

the Supplementary Material; the qualitative patterns presented here converged across all 

simulated confidence levels and test trials. We imagine that the reader will note a striking 

similarity in the results of the consistency simulations (Figure 4) compared to the quantity 

simulations (Figure 2). Indeed, the predicted identification functions (Figure 4, panel B) and 

category boundaries (Figure 4, panel C) are strikingly similar both qualitatively and 

quantitatively to those observed for the quantity simulations. Specifically, the magnitude of the 

learning effect (i.e., the displacement between the simulated /s/- and /ʃ/-bias conditions) is graded 

in line with the quantity of evidence and does not appear to be diminished by the lack of 

consistency in the simulated input. 

Why these predicted patterns emerge can be understood by considering the updated 

beliefs shown in Figure 4, panel A. For the quantity simulations, updated beliefs for a given 

category only differ from the prior belief when the simulated evidence was inconsistent with the 

prior; that is, the updated beliefs for the /s/ category differ from the prior in the /s/-bias 
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simulations and the updated beliefs for the /ʃ/ category differ from the prior in the /ʃ/-bias 

simulations. In each case, the updated beliefs differ not only by a shift in the mean but also a 

widening of the standard deviation. Recall that in this computational framework, receiving 

evidence that aligns with expectations yields no change to beliefs. This is robustly apparent in 

the model beliefs for the category that reinforced the prior (i.e., the /ʃ/ category in the /s/-bias 

simulations and the /s/ category in the /ʃ/-bias simulations), and these tenets explain why the 

model predictions converge between the quantity and consistency simulations. 

Figure 4. Results of the consistency simulations. Panel A shows the updated beliefs for one 
simulated subject in each bias by dose condition in addition to the prior beliefs (in gray). Panel B 
shows the inferred identification function for each set of updated beliefs. Panel C shows the 
mean category boundary as derived from the inferred identification functions across the 50 
simulated subjects in each bias by dose condition; error bars indicate standard error of the mean. 

 

To make this explicit, consider the 10x dose, /s/-bias condition. Receiving evidence of 10 

“ambiguous” productions of the /s/ category required the model to update beliefs about the /s/ 

category, including a widening of the expected variance of this category. The inclusion of 10 

“clear” productions of the same category is already accommodated by the belief that the category 
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has a large standard deviation. Accordingly, additional interspersed evidence of 10 “clear” 

productions of /s/ does not require any differential belief-updating compared to widening 

category expectations given “ambiguous” exposure alone. 

Viewed collectively, the results of the quantity and consistency simulations make two 

clear predictions for human behavior. First, both sets of simulations predict that the magnitude of 

the lexically guided perceptual learning effect will be graded in response to the exposure dose, 

with learning increasing as evidence increases. Second, comparing across the quantity and 

consistency simulations for a given exposure dose leads to the prediction that learning will not be 

affected by exposure consistency. In the experiments presented below, we test these two 

predictions in human listeners. 

3. EXPERIMENT 1 

 The results of the computational simulations confirm a key tenet of the ideal adapter 

model of adaptation; namely, that degree of adaptation (i.e., learning) is graded to reflect 

quantity of input evidence. The goal of experiment 1 is to test this prediction with human 

listeners. Eight groups of listeners completed a lexical decision exposure phase followed by a 

test phase. Across listener groups, we parametrically manipulated lexical bias (/s/-bias vs. /ʃ/-

bias) and exposure dose (1 vs. 4 vs. 10 vs. 20 critical productions). Within each dose, the 

learning effect was measured as the difference between the two bias conditions at test. If 

lexically guided perceptual learning is graded to reflect quantity of evidence in the input, as 

predicted by the ideal adapter framework, then the magnitude of the learning effect will 

monotonically scale with exposure dose. 

3.1. Methods 

3.1.1. Participants 
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The sample size and inclusion/exclusion criteria were preregistered; the preregistration is 

available on the OSF repository for this manuscript (https://osf.io/zkbng/).1 Participants (n = 

400) were recruited from the Prolific participant pool according to the following criteria: 

between 18 – 35 years of age, born in and currently residing in the United States, monolingual 

English speaker, no history of language related disorders, and a Prolific approval score ≥ 98 

based on completion of ≥ 10 studies. Moreover, no participant took part in any previous lexically 

guided perceptual learning study in our laboratory. Participants were randomly assigned to one 

of eight cells formed by crossing lexical bias (/s/-bias vs. /ʃ/-bias) and exposure dose (1x vs. 4x 

vs. 10x vs. 20x) yielding 50 participants in each cell. 

An additional 13 participants were tested but excluded from analyses due to failure to 

pass the headphone screen (n = 6), failure to achieve  ≥ 80% accuracy during the lexical decision 

exposure phase (n = 6), or failure to respond to ≥ 10% of the trials (n = 1). The final sample 

included 172 men, 226 women, and two individuals who declined to report gender. The mean 

age of participants was 26 years (SD = 5 years, range = 18 – 35 years). As described in the 

                                                      

1 The experiments presented here deviated from the preregistered protocol in two ways. First, the 

inclusion criterion for lexical decision accuracy during exposure was set to ≥ 80% correct instead 

of ≥ 90% correct. This is because we inaccurately set the inclusion criterion in the 

preregistration; it was adjusted to ≥ 80% to be more consistent with the convention for lexical 
decision accuracy. The results presented in the main text hold when limited to those who met the 
preregistered inclusion criterion, as can be viewed by executing the script provided on the OSF 
repository for this manuscript. Second, we only tested listeners in the 10x dose condition in 
experiment 2 instead of also testing listeners in the 1x and 4x dose conditions. We made this 
decision for two reasons. First, the results of experiment 1 provided no strong evidence of 
learning for the 1x and 4x dose conditions. Though a statistically significant learning effect was 
observed for the 4x dose condition, the magnitude of this effect was small, and there was no 
significant interaction between bias and dose for the 1x vs. 4x contrast. Second, testing the 
consistency hypothesis in experiment 2 requires testing whether the magnitude of learning when 

it occurs is influenced by consistency of evidence for a given dose. Because there was no strong 
evidence of learning for the (consistent) 1x and 4x dose conditions in experiment 1, including 
these conditions in experiment 2 did not seem a justifiable use of lab resources; accordingly, only 
the 10x dose condition was included in experiment 2. 



23 

 

Supplementary Material, a priori power analyses indicated that this sample size, reflecting 50 

participants in each between-subjects condition, provided high power to detect our effect sizes of 

interest. 

3.1.2. Stimuli 

The stimuli were identical to those used in Tzeng et al. (2021), to which the reader is 

referred for comprehensive details on stimulus construction. In brief, the stimulus set consisted 

of 240 exposure tokens [(20 /s/ words x 2 variants) + (20 /s/ words x 2 variants) + 60 filler words 

+ 100 nonwords] and nine test tokens. Exposure tokens included auditory recordings of 100 

English words, 20 containing a single instance of /s/ and no occurrence of /ʃ/ (e.g., rehearsal), 20 

containing a single /ʃ/ and no occurrence of /s/ (e.g., publisher), and 60 that contained no 

instances of either /s/ or /ʃ/ (e.g., ballerina). Two variants of the /s/ and /ʃ/ words were created, 

one that contained the natural production of /s/ or /ʃ/ (the clear variant) and one in which the 

natural production of /s/ or /ʃ/ was replaced with a digital mixture of a natural /s/ and /ʃ/ 

production that was judged to be perceptually ambiguous between /s/ and /ʃ/ (the ambiguous 

variant). As described in Tzeng et al. (2021), the ambiguous variant consisted of a custom digital 

mixture for each /s/ and /ʃ/ word. Exposure tokens also included auditory recordings of 100 

nonwords that contained no instances of either /s/ or /ʃ/ (e.g., baliber). 

Test tokens consisted of a nine-step continuum that perceptually ranged from /ɑʃi/ to 

/ɑsi/. The fricative portion of the test continuum was created by digitally mixing energy from 

natural /ʃ/ and /s/ productions in different weights to yield continuum steps that ranged from 80% 

/ʃ/ - 20% /s/ to 20% /ʃ/ - 80% /s/ in seven equidistant units for the midpoint steps (steps 2 – 8). 

The endpoint steps reflected a 100% /ʃ/ - 0% /s/ mixture (step 1) and a 0% /ʃ/ - 100% /s/ mixture 

(step 9). All exposure and test tokens were produced by a single female talker, referred to as “f1” 
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in Tzeng et al. (2021). 

3.1.3. Procedure 

All experiments presented here were web-based studies hosted on the Gorilla platform 

(Anwyl-Irvine et al., 2020). After providing informed consent, participants completed a 

headphone screen, an exposure phase, and a test phase. The headphone screen used tasks 

reported in Woods et al. (2017) and Milne et al. (2021), which are brief, dichotic listening tasks 

developed to screen for headphone use in web-based experiments.  

The exposure phase consisted of a lexical decision task. All participants heard 60 filler 

words and 100 nonwords during exposure. In addition, listeners in the /s/-bias conditions heard 

ambiguous variants of /s/ words and clear variants of /ʃ/ words, and listeners in the /ʃ/-bias 

conditions heard ambiguous variants of /ʃ/ words and clear variants of /s/ words. As shown in 

Table 1, we manipulated the number of /s/ and /ʃ/ words across dose conditions such that (1) 

equal numbers of the critical /s/ and /ʃ/ words were presented for a given dose condition and (2) 

the number of critical words differed across dose conditions. For each participant, items were 

randomly sampled from the full stimulus set. For example, each listener in the /s/-bias, 1x dose 

condition heard one ambiguous /s/ word that was randomly sampled from the full set of 20 

ambiguous /s/ words and one clear /ʃ/ word that was randomly sampled from the full set of 20 

clear /s/ items. Listeners in the 20x dose conditions thus heard the full set of items appropriate 

for their bias condition. On each trial, listeners heard one item and were asked to indicate 

whether the item was a real English word or not by clicking on one of two buttons labeled either 

“Yes” or “No.” Assignment of button labels was counterbalanced across listeners within each 

cell. No feedback was provided, and trials were separated by 1000 ms, timed from the 

participant’s response to the onset of the next auditory stimulus. 
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Table 1. Distribution of exposure trials by item type and total number of trials for each bias and 
dose condition in each experiment. 

   Words  

Nonwords 

 

Experiment Bias Dose /s/  /ʃ/  
Filler 

 Trials 

   Ambiguous Clear  Ambiguous Clear    

1 /s/ 1x 1 -  - 1  60  100 162 

  4x 4 -  - 4  60  100 168 

  10x 10 -  - 10  60  100 180 

  20x 20 -  - 20  60  100 200 

 /ʃ/ 1x - 1  1 -  60  100 162 

  4x - 4  4 -  60  100 168 

  10x - 10  10 -  60  100 180 

  20x - 20  20 -  60  100 200 

2 /s/ 10x 10 10  - 20  60  100 200 

 /ʃ/ 10x - 20  10 10  60  100 200 

 

Following the exposure phase, all listeners completed a test phase that was identical 

across all dose and bias conditions. The primary test phase consisted of 45 trials of a phonetic 

identification task, reflecting five cycles of the nine steps of the test continuum. For each 

participant, each cycle was a separate randomized order of the nine continuum steps. Following 

the primary test phase, participants completed an additional five test cycles that were used in 

exploratory analyses (presented in the Supplementary Material) to examine the influence of dose 

on learning over time, given past research that has shown that the learning effect in the standard 

dose condition atrophies over longer test sessions (e.g., Giovannone & Theodore, 2021; Liu & 

Jaeger, 2018; Tzeng et al., 2021). As for the primary test phase, each cycle in the secondary test 

phase was a separate randomized order of the nine continuum steps for each participant. 

On each trial, listeners heard one test token and were asked to indicate its identity as 

quickly and as accurately as possible by clicking on one of two buttons labeled either “ashi” or 

“asi.” Assignment of button labels was counterbalanced across listeners. As with the exposure 
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phase, no feedback was provided at test. Trials were separated by 1000 ms timed from the 

participant’s response to the onset of the next auditory stimulus. The entire procedure lasted 

approximately 15 minutes and participants were paid $2.50 for their participation. 

3.2. Results 

Trial-level data and analysis code for all experiments reported here are available on the 

OSF repository for this manuscript: https://osf.io/zkbng/. Performance during the exposure phase 

was analyzed in terms of percent correct lexical decision accuracy. An item was considered 

correct if the response matched the intended item type (i.e., a response was correct if the 

participant responded “word” to the /s/ word, /ʃ/ word, or filler word items or if the participant 

responded “nonword” to the nonword items). As shown in Table 2, mean lexical decision was 

near ceiling for each bias by dose condition, as expected given that high accuracy during 

exposure was an inclusion criterion for participation.2 

Performance during test was analyzed in terms of asi responses for the phonetic  

identification task. To visualize performance, Figure 5, panel A shows mean proportion asi 

                                                      

2 In the Supplementary Material, we present the results of a secondary analysis of performance 
during the exposure phase that examined lexical decision accuracy (percent correct) as a function 
of dose and bias for each of the four item types presented during exposure (i.e., /s/ words, /ʃ/ 
words, filler words, and nonwords). In brief, the results of this analysis showed no significant 
effect of dose on lexical decision accuracy nor any interaction between dose and bias for any of 
the four item types. The lack of an influence of dose on lexical decision accuracy mitigates the 
concern that the slightly unequal number of word and nonwords items in the 1x, 4x, and 10x 
dose conditions (see Table 1) may have introduced a response bias that affected lexical decision 
accuracy. Accuracy for /s/ words was slightly lower for listeners in the /s/-bias conditions who 
heard ambiguous variants (mean = 95.5, SD = 14.5) compared to listeners in the /ʃ/-bias 
conditions who heard clear variants (mean = 99.2, SD = 3.4), suggesting a slight degree of 
reluctance in endorsing ambiguous variants as lexical items. Similarly, accuracy for /ʃ/ words 
was slightly lower for listeners in the /ʃ/-bias conditions (mean = 97.9, SD = 11.2) compared to 
the /s/-bias conditions (mean = 99.8, SD = 1.2). Though slight differences in accuracy were 
observed for the ambiguous and clear variants of the critical /s/ and /ʃ/ words, accuracy in all 
cases was near ceiling, indicating that the ambiguous variants were overwhelming endorsed as 
lexical items. The reader is referred to the Supplementary Material for a comprehensive reporting 
of this secondary analysis. 
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Table 2. Mean lexical decision accuracy (percent correct) for each dose and bias condition in 
each experiment. Means reflect grand means calculated over by-subject means. Standard 
deviations are provided in parentheses. 

  Dose 

Experiment Bias 1x 4x 10x 20x 

1 /s/ 96.3 (3.7) 96.3 (3.3) 96.8 (3.3) 97.6 (2.1) 

 /ʃ/ 97.1 (2.5) 96.6 (2.8) 96.8 (2.6) 97.1 (3.1) 

2 /s/ - - 96.6 (2.7) - 

 /ʃ/ - - 97.5 (1.9) - 

 
 

Figure 5. Results of experiment 1. Panel A shows mean proportion asi responses at test for each 
continuum step separately for each bias by dose condition. Means reflect grand means calculated 
over by-subject averages; error bars indicate standard error of the mean. Panel B shows the 
boxplot distribution of mean proportion asi responses across listeners in each bias by dose 
condition collapsing across continuum step. Annotations below the boxplot distributions indicate 
p-values associated with the main effect of bias in each dose condition. Annotations above the 
boxplot distributions indicate p-values associated with the bias by dose interaction, as described 
in the main text. 

 

responses for each continuum step separately for each bias by dose condition; means reflect 

grand means calculated over by-subject means. Figure 5, panel B shows the distribution of by-
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subject means for each bias by dose condition collapsing across continuum step. Inspection of 

Figure 5 suggests that the magnitude of the learning effect (i.e., the difference between the two 

bias conditions) monotonically scales with exposure dose from a limited (or perhaps absent) 

learning effect in the 1x dose condition to a relatively maximal learning effect in the 20x dose 

condition.  

To examine these patterns statistically, trial-level responses (0 = ashi, 1 = asi) were 

submitted to a series of generalized linear mixed effects models (GLMMs) with the binomial 

response family as implemented in lme4 (Bates et al., 2015); the Satterthwaite approximation of 

degrees of freedom was used to evaluate statistical significance using lmerTest (Kuznetsova et 

al., 2017).3 The first set of models tested for an effect of bias in each dose condition separately. 

Accordingly, these models reflect the standard approach to identifying learning in this paradigm; 

that is, to identify conditions under which any effect of bias occurs. For each of these models, the 

fixed effect was bias and the random effects structure consisted of random intercepts by subject 

and random slopes by subject for continuum step. Bias was entered into the model as a mean-

centered contrast (/ʃ/ = -0.5, /s/ = 0.5); continuum step was entered into the model in terms of 

percent /s/ energy in the continuum step as a scaled/centered continuous variable. The results of 

these models revealed no significant effect of bias in the 1x dose condition (� = 0.586, SE = 

0.406, z = 1.443, p = 0.149) and significant effects of bias in the 4x (� = 1.009, SE = 0.407, z = 

2.477, p = 0.013), 10x (� = 2.498, SE = 0.396, z = 6.310, p < 0.001), and 20x (� = 3.663, SE = 

0.448, z = 8.182, p < 0.001) dose conditions. Thus, these results indicate that four exposures 

were sufficient to induce a learning effect as indexed by a statistically reliable influence of 

                                                      

3 In addition to the R packages cited in the main text, we also acknowledge the dplyr and ggplot2 
packages from the tidyverse suite (Wickham et al., 2019) that were used for data manipulation 
and data visualization, and the interactions (Long, 2019) and cowplot (Wilke, 2019) packages 
that were used for data visualization. 
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lexical bias on asi responses at test. 

To address our primary question, whether the magnitude of the learning effect scales with 

exposure dose, trial-level asi responses from all four dose conditions were examined in a single 

GLMM. The model included fixed effects of bias, dose, and their interaction. Dose was entered 

into the model as a series of sliding contrasts that compared consecutive exposure doses (i.e., 1x 

vs. 4x, 4x vs. 10x, 10x vs. 20x). The random effects structure was identical to that described for 

the individual dose models. The results revealed a robust effect of bias (� = 2.053, SE = 0.212, z 

= 9.681, p < 0.001) reflecting more asi responses for listeners biased to interpret the ambiguity as 

/s/ compared to those biased to interpret the ambiguity as /s/. There was no main effect of dose 

for either the 1x vs. 4x (� = -0.046, SE = 0.285, z = -0.161, p < 0.872) or the 4x vs. 10x (� = 

0.425, SE = 0.288, z = 1.477, p = 0.140) contrasts; however, there were more asi responses in the 

20x compared to the 10x condition (� = 0.836, SE = 0.297, z = 2.812, p = 0.005). Critically, 

there was no interaction between bias and dose for the 1x vs. 4x contrast (� = 0.489, SE = 0.571, 

z = 0.856, p = 0.392), providing no evidence to suggest that the magnitude of the bias effect 

differed between these two doses. In contrast, a significant bias by dose interaction was observed 

for the 4x vs. 10x contrast (� = 1.510, SE = 0.574, z = 2.630, p = 0.009) and for the 10x vs. 20x 

contrast (� = 1.261, SE = 0.595, z = 2.121, p = 0.034). In both cases, the direction of the beta 

estimate indicates that the bias by dose interaction reflects a larger effect of bias for the higher 

dose; that is, the bias effect was larger for the 10x compared to the 4x dose condition and for the 

20x compared to the 10x dose condition. These interactions support the hypothesis that the 

magnitude of the learning effect scales with exposure dose. 

4. EXPERIMENT 2 

 Consistent with the predictions of the ideal adapter model, the results of experiment 1 
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demonstrated that perceptual learning was graded in response to the quantity of the evidence in 

the input to support belief-updating. Specifically, the magnitude of the learning effect 

monotonically increased across the 4x, 10x, and 20x dose conditions, suggesting that increased 

evidence is associated with increased learning. Recall that all dose conditions in experiment 1 

presented consistent evidence in support of belief-updating. That is, exposure in all dose 

conditions provided evidence that the talker consistently produced either the /s/ or /ʃ/ category 

with “ambiguous” variants. As reviewed in the introduction, Tzeng et al. (2021) observed that 

learning was attenuated when exposure consisted of 10 ambiguous variants and 10 clear 

productions of the same category compared to when exposure consisted of 20 ambiguous 

variants. Accordingly, diminished learning could reflect a decreased quantity of evidence or 

decreased consistency of evidence. 

The goal of experiment 2 is to examine how quantity and consistency influence lexically 

guided perceptual learning. To do so, two additional groups of listeners completed a 10x dose 

condition in which they heard 10 ambiguous variants in either an /s/- or /ʃ/-biasing context along 

with 10 clear variants of the same category. Compared to the 10x dose condition in experiment 1, 

the quantity of evidence suggesting that the talker produces the biased category with an atypical 

phonetic pattern is equated, yet the global context yields inconsistent evidence given that 

listeners also heard 10 clear productions of the biased category. Performance for the inconsistent 

10x dose condition in experiment 2 is compared to the 10x and 20x dose conditions in 

experiment 1. If quantity of evidence is the key determinant of lexically guided perceptual 

learning, then the magnitude of learning will be equivalent between the inconsistent and 

consistent 10x dose conditions, which will both show weaker learning compared to the consistent 

20x dose condition. If consistency of evidence further impacts learning, then learning will be 
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weaker in the inconsistent 10x dose condition compared to the consistent 10x dose condition. As 

shown in Figures 2 and 4, the model simulations demonstrated that the ideal adapter framework 

predicts that quantity of evidence is the putative factor. 

4.1 Methods 

4.1.1. Participants 

A different sample of 100 participants were recruited from the Prolific participant pool 

following all criteria outlined for experiment 1. The final sample included 41 men and 59 women 

with a mean age of 25 years (SD = 5 years). Participants were randomly assigned to either the 

/s/-bias or /ʃ/-bias exposure condition, yielding 50 participants in each cell. As described above 

(and shown in Table 1), dose was held constant across all listeners reflecting 10 ambiguous 

productions and 10 clear productions of the biased category. An additional three participants 

were tested but excluded from analyses due to failure to pass the headphone screen. 

4.1.2. Stimuli 

 The stimuli were identical to those described for experiment 1. 

4.1.3. Procedure 

 The procedure was identical to that outlined for experiment 1 with one key exception: all 

listeners heard 20 /s/ words and 20 /ʃ/ words during exposure (along with 60 filler words and 100 

nonwords), as shown in Table 1. For listeners in the /s/-bias condition, these words included 10 

ambiguous /s/ words, 10 clear /s/ words, and 20 clear /ʃ/ words. For listeners in the /ʃ/-bias 

condition, these words included 10 ambiguous /ʃ/ words, 10 clear /ʃ/ words, and 20 clear /s/ 

words. 

4.2 Results  

 Performance during the exposure phase was analyzed as described for experiment 1. As 
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shown in Table 2, mean lexical decision was near ceiling for each bias condition, as expected 

given that high accuracy during exposure was an inclusion criterion for participation.4 

Performance at test was also analyzed as described for experiment 1. Figure 6, panel A 

shows mean proportion asi responses for each continuum step separately for each bias by dose 

condition; means reflect grand means calculated over by-subject means. This figure shows the 

inconsistent 10x dose condition (reflecting the new sample tested for experiment 2) along with 

the consistent 10x and 20x dose conditions (reflecting the samples tested in experiment 1). 

Figure 6, panel B shows the distribution of by-subject means for each bias by dose condition 

collapsing across continuum step. Inspection of Figure 6 suggests that the magnitude of the 

learning effect (i.e., the difference between the two bias conditions) is comparable between the 

inconsistent 10x and consistent 10x dose conditions, which both show weakened learning 

compared to the consistent 20x dose condition. To analyze these patterns statistically, we first 

tested for a main effect of bias in the inconsistent 10x dose condition. The GLMM revealed a 

significant effect of bias (� = 1.725, SE = 0.451, z = 3.882, p < 0.001), reflecting more asi 

                                                      

4 As for experiment 1, we conducted a secondary analysis of lexical decision accuracy during the 
exposure phase that is reported in full in the Supplementary Material. We first examined whether 
accuracy (percent correct) for each item type differed between the two bias conditions. Accuracy 
for /s/ words was slightly lower for the /s/-bias condition (mean = 96.4, SD = 7.0) compared to 
the /ʃ/-bias condition (mean = 99.4, SD = 1.9); however, no significant difference between the 
two bias conditions was observed for the /ʃ/ words. Because listeners in each bias condition of 
experiment 2 heard both ambiguous and natural variants of the to-be-learned category (i.e., /s/ 
words for the /s/-bias condition, /ʃ/ words for the /ʃ/-bias condition), in contrast to listeners in 
experiment 1 who only heard ambiguous variants of the to-be-learned category, we also 
examined lexical decision accuracy between the two variants for each bias condition. Listeners in 
the /s/-bias condition had slightly lower lexical decision accuracy for the ambiguous variants 
(mean = 93.2, SD = 13.9) compared to the clear variants of /s/ words (mean = 99.6, SD = 2.0). 
For listeners in the /ʃ/-bias condition, there was no statistically significant difference in lexical 
decision accuracy between the ambiguous variants (mean = 98.3, SD = 4.7) and clear variants 
(mean = 98.7, SD = 4.1) of /ʃ/ words. As was observed in experiment 1, accuracy in all cases was 
near ceiling, indicating that the ambiguous variants were endorsed as lexical items. The reader is 
referred to the Supplementary Material for a comprehensive reporting of this secondary analysis. 
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responses in the /s/-bias compared to the /ʃ/-bias exposure condition. This result indicates that 

even in the face of inconsistent evidence regarding a talker’s characteristic production, 10 

exposures to an “ambiguous” production in a lexically-biased context were sufficient to induce 

perceptual learning. 

Figure 6. Results of experiment 2. Panel A shows mean proportion asi responses at test for each 
continuum step separately for each bias by dose condition. Means reflect grand means calculated 
over by-subject averages; error bars indicate standard error of the mean. Panel B shows the 
boxplot distribution of mean proportion asi responses across listeners in each bias by dose 
condition collapsing across continuum step. Annotations below the boxplot distributions indicate 
p-values associated with the main effect of bias in each dose condition. Annotations above the 
boxplot distributions indicate p-values associated with the bias by dose interaction. As described 
in the main text, the 10x (Inconsistent) condition tested in experiment 2 was compared to the 10x 
(Consistent) and 20x (Consistent) conditions that were tested in experiment 1, which are plotted 
together here to promote more direct visual comparison. 

 

Second, we examined the magnitude of the learning effect across dose conditions. As for 

experiment 1, the GLMM included fixed effects of bias, dose, and their interaction, with the 
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random effects structure including random intercepts by subject and random slopes by subject 

for continuum step. Dose was entered into the model as a series of sliding contrasts (i.e., 10x 

inconsistent vs. 10x consistent, 10x consistent vs. 20x consistent). The model revealed a 

significant effect of bias (� = 2.763, SE = 0.253, z = 10.940, p < 0.001). The main effect of dose 

was not reliable for the 10x inconsistent vs. 10x consistent contrast (� = 0.147, SE = 0.291, z = 

0.505, p = 0.613), but it was reliable for the 10x consistent vs. 20x consistent contrast (� = 

0.817, SE = 0.299, z = 2.732, p = 0.006), reflecting more asi responses in the latter compared to 

the former. Critically, the model showed no significant interaction between bias and dose for the 

10x conditions (� = 0.863, SE = 0.583, z = 1.480, p = 0.139), providing no evidence to suggest 

that the magnitude of the bias effect differed for inconsistent compared to consistent input when 

dose of ambiguous productions was held constant. As expected, there was a significant 

interaction between bias and dose for the 10x consistent and 20x consistent dose conditions (� = 

1.207, SE = 0.598, z = 2.020, p = 0.043), reflecting a stronger bias effect in the latter condition. 

5. DISCUSSION 

 There is tremendous variability in how a given linguistic message manifests as acoustic 

patterns in speech input, including variability that is conditioned on who is speaking. Explicating 

how listeners solve this lack of invariance problem has been a key goal of speech perception 

research for decades. Here, we contribute to this effort by examining the degree to which human 

behavior is predicted by a formal instantiation of the ideal adapter framework for speech 

adaptation. A core prediction of the ideal adapter framework is that learning should be graded to 

reflect the extent of evidence for adaptation in speech input, yet empirical work has left this 

hypothesis largely unacknowledged and not conclusively tested. Conversely, behavioral findings 

have implicated consistency of evidence as a potential determinant of learning, which extant 
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theoretical models have yet to explore. In the current work, computational modeling of the ideal 

adapter framework confirmed the key tenet under examination here; specifically, the model 

simulations predicted that lexically guided perceptual learning would be graded to reflect the 

quantity of evidence in the input. In contrast, the model simulations predicted no influence of 

input consistency on lexically guided perceptual learning. The model predictions were largely 

upheld in human listeners. The results of experiment 1 showed that significant learning was 

observed given exposure to four or more ambiguous tokens, with the magnitude of learning 

monotonically increasing given exposure to four, 10, or 20 critical tokens. The results of 

experiment 2 found no evidence of a differential learning effect given consistent or inconsistent 

evidence; that is, no reliable difference in learning was observed between listeners who only 

heard 10 ambiguous productions compared to listeners who heard 10 ambiguous productions and 

10 clear productions of the same category. 

These findings provide support for the ideal adapter model as a plausible framework for 

understanding lexically guided perceptual learning specifically and adaptation in speech 

perception more generally, consistent with recent findings that have invoked the ideal adapter 

framework as an explanatory theory of perceptual learning (Cummings & Theodore, 2022; Liu & 

Jaeger, 2018, 2019; Luthra et al., 2021; Saltzman & Myers, 2021; Theodore et al., 2019; 

Theodore & Monto, 2019; Tzeng et al., 2021). Specifically, modeling behavior as a cumulative 

integration of local evidence (i.e., input during the exposure phase) with global experience (i.e., 

prior knowledge) yielded predictions that qualitatively aligned with human performance. 

Formalizing the theoretical claims of the ideal adapter framework through a computational 

implementation of this theory allowed for predictions to be specified beyond a “verbal theory” 

level of engagement with this framework (van Rooij & Blokpoel, 2020), and theoretical claims 
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may differ based on the level of theory specification. For example, in Tzeng et al. (2019), we 

hypothesized that the reason why learning was attenuated when listeners heard 10 ambiguous 

productions along with 10 clear productions of the same category compared to when listeners 

only heard 20 ambiguous productions of a given category was because learning reflected 

sensitivity to both the quantity and consistency of evidence for the ambiguous production. 

However, formal engagement with the ideal adapter theory in the current work revealed that 

quantity alone was predicted to be the putative factor for adaptation. 

Formalizing the theoretical claims of the ideal adapter framework though a computational 

instantiation also requires critical assumptions to be explicitly identified. The predictions and 

subsequent interpretation of the current results are of course bound to these assumptions. Here 

we consider four key assumptions that were made in the current work. First, the ideal adapter 

framework posits that speech sounds are represented by cue-sound mappings; here we posited 

that spectral center is a putative cue for the /ʃ/-/s/ contrast. Though spectral center is often used to 

capture the distinction between /ʃ/ and /s/ (Newman et al., 2001), it is certainly not the only 

measure disambiguating these two sounds; indeed, there are over 40 acoustic properties that 

distinguish fricatives from one another (Jongman et al., 2000; McMurray & Jongman, 2011). 

Many of these cues show high correlations among each other, and so this simplification is 

perhaps warranted or at least acceptable. Second, our simulations assumed that the “ambiguous” 

tokens presented during exposure were perfectly intermediate between listeners’ prior categories 

for /ʃ/ and /s/ and, related, that prior experience was constant across listeners. As we discuss 

further below, this follows convention to use 50/50 blends of /ʃ/ and /s/ energy to create 

perceptually ambiguous tokens; however, this convention may not in fact yield acoustically 

identically variants (given that the precise acoustic pattern is contingent on spectral center of the 
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two clear productions that were used to create the custom 50/50 blend for each word). Moreover, 

individuals may differ in their stored representations of cue-sound mappings. Third, we assumed 

that perception of the ambiguous variants was perfectly in line with the intended lexically-biased 

category. That is, the model simulations assumed perfect identification of the ambiguous variant 

as /s/ for the /s/-bias simulations and as /ʃ/ for the /ʃ/-bias simulations. This is reasonable given 

that near ceiling accuracy is observed for the lexical decision exposure task both in the extant 

literature and in the current work; however, a more accurate assumption may be to introduce a 

minor level of response noise to simulate accuracy that is not perfectly at ceiling. Fourth, for the 

simulations presented in the main text, we assumed a moderate level of confidence in prior 

knowledge. The Supplementary Material present the results of simulations that used lower 

confidence levels and thus assumed a system with greater flexibility. Though the qualitative 

patterns regarding the influence of quantity and consistency on the degree of adaptation held 

across all confidence level parameters, the magnitude of the predicted lexically guided 

perceptual learning effect was influenced by the prior specification such that larger effects were 

predicted for lower compared to higher confidence levels. These assumptions appear sufficient 

for the ideal adapter model to generate predictions that qualitatively align with observed human 

behavior; however, future research is needed to evaluate each assumption, its predicted influence 

on learning, and the alignment between theoretical predictions and observed human behavior in 

greater detail. 

As described in the introduction, inspection of learning outcomes in the lexically guided 

perceptual learning literature reveals wide heterogeneity in the magnitude of adaptation. To date, 

the specific magnitude of the learning effect has received little consideration or formal 

investigation relative to the convention of considering learning as a binary outcome (i.e., present 
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vs. absent, cf. Cummings & Theodore, 2022; Liu & Jaeger, 2018; Tzeng et al., 2021). The ideal 

adapter model is a theoretical framework that is particularly well-suited for understanding graded 

learning outcomes that may reflect specific methodological characteristics of a given 

examination of lexically guided perceptual learning. For example, previous investigations in this 

domain have examined perceptual learning for different phonetic contrasts, different stimulus 

sets for a given a phonetic contrast, and different quantities of exposure. The current results 

confirm that the quantity of exposure can be linked to the magnitude of the learning effect, at 

least over the range of exposure doses examined here. The ideal adapter framework can also be 

invoked to examine how stimulus-level factors may contribute to graded learning outcomes. For 

example, consider a situation in which listeners receive an equal “dose” of atypical input. 

Holding dose constant, the ideal adapter framework can yield predictions in which learning may 

differ depending on the specific acoustic-phonetic nature of the ambiguous input. The 

convention for selecting ambiguous exemplars in this paradigm is via perceptual criteria (i.e., 

selecting a blend that is deemed perceptually ambiguous, which most often reflects a 50/50 blend 

of two natural fricative productions), a practice that may not yield equivalent acoustic patterns 

across stimulus sets. If, for example, the selected “ambiguous” variants exhibit acoustic patterns 

that are relatively close to prior expectations, then learning would be predicted to be smaller in 

magnitude compared to ambiguous variants that are perfectly intermediate to the two categories 

under examination. The ideal adapter framework predicts that learning will reflect the degree to 

which the atypical input deviates from prior expectations and thus provides a means to link 

graded learning outcomes to the specific acoustic input presented during the exposure phase. 

Indeed, there is some evidence to support stimulus-level influences on the magnitude of lexically 

guided perceptual learning (Babel et al., 2019). Because formal instantiation of the ideal adapter 
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framework allows simulation of both stimulus-level (i.e., acoustic characteristics of input) and 

environment-level (i.e., quantity of evidence) factors, this framework could also be used to 

examine potential interactions between these factors. Recall that Liu and Jaeger (2018) found no 

significant interaction between the magnitude of the learning effect and exposure dose, in 

contrast to the robust influence of exposure dose on learning that was observed in the current 

work. This discrepancy may reflect a lack of power to detect this interaction in Liu and Jaeger 

(2018), given that their study was not designed to test this question specifically. However, it may 

also reflect a potential interaction between exposure dose and stimulus-specific properties that 

may have differed between the two investigations. 

Discussion to this point regarding evidence in the input and subsequent incrementality of 

learning has been limited to the exposure phase in the lexically guided perceptual learning 

paradigm. This is consistent with the convention to consider the test phase as a measure of 

learning outcomes that arise given adaptation to the exposure input. As described in the 

introduction, the ideal adapter framework provides a unifying account of adaptation that occurs 

in response to explicit supervisory signals, such as disambiguating lexical context, and 

adaptation that occurs given implicit learning signals, such as unsupervised changes in the 

distributional patterns in speech input (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015, 2016; 

Theodore et al., 2019; Theodore & Monto, 2019; Tzeng et al., 2021). Recall that the test phase in 

this paradigm generally consists of a repeated presentation of a uniform continuum of tokens 

spanning the acoustic space between the sounds of interest, without lexical guidance to label the 

input as one category versus the other. Recent findings demonstrate that the magnitude of the 

lexically guided perceptual learning effect attenuates over longer test phases (Giovannone & 

Theodore, 2021; Liu & Jaeger, 2019; Scharenborg & Janse, 2013; Tzeng et al., 2021), suggesting 
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that listeners engage in some degree of adaptation to the test stimuli themselves. Attenuation of 

learning across the test phase is predicted by the ideal adapter framework. Specifically, the 

posterior beliefs given exposure input continue to be updated given exposure to the test stimuli, 

which results in an attenuation of the lexically-driven learning effect given experience with the 

uniform distribution of acoustic-phonetic variants at test. Exploratory analyses in the current 

study, which compared learning in the primary test phase to learning in a second test phase that 

was completed directly after the primary test phase, confirm the attenuation of lexically-guided 

learning over longer test phases. These analyses, along with parallel computational stimulations, 

are presented in the Supplementary Material. 

The atrophy of learning over the course of longer test phases has a relevant implication 

even beyond providing empirical support for the ideal adapter framework and associated graded 

learning outcomes. Specifically, the nature of the test phase across the lexically guided 

perceptual learning literature shows even more heterogeneity than researcher decisions regarding 

the exposure phase. For example, some test phases have only presented potentially ambiguous 

variants (e.g., Liu & Jaeger, 2018) while others also included multiple clear continuum endpoints 

(e.g., Tzeng et al., 2021). The resolution of the test continuum also varies, with some studies 

presenting six steps that span clear endpoints (e.g., Kraljic et al., 2008) and other studies 

presenting as many as 60 unique test tokens (e.g., Chládková et al., 2017). Furthermore, the 

duration of the test phase varies, with some studies presenting a limited number of test cycles 

resulting in 30 test trials (e.g., Eisner & McQueen, 2005) and other studies presenting extensive 

test cycles of multiple test continua leading to 480 total test trials (e.g., Kraljic & Samuel, 2006). 

The ideal adapter models predicts that the conditions of the test phase – including the specific 

acoustic characteristics of the test stimuli and the quantity of input received during test (i.e., the 
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duration of the test phase) – will itself impact performance during test and thus influence the 

degree to which the test phase provides a “pure” measure of adaptation that arises given 

lexically-biased input during the exposure phase. Accordingly, the framework provides a means 

to test the hypothesis that heterogeneity of learning outcomes in the extant literature may reflect 

graded learning outcomes that are linked not only to the specific conditions of the critical 

exposure phase, but also to the specific conditions of the test phase. 

Operationalizing adaptation as a graded outcome that reflects a continuous integration of 

observed evidence with beliefs formed over long-term experience – consistent with the primary 

tenet of the ideal adapter framework – holds extreme promise for advancing theoretical accounts 

of perceptual learning. This viewpoint also has the potential to reconcile what on the surface may 

appear to be discrepant findings in the literature. As described in the introduction, two recent 

investigations examined the influence of exposure dose on perceptual learning for multiple 

talkers. Luthra et al. (2021) observed no statistically significant learning effect given exposure to 

16 critical productions, which was observed given exposure to 32 critical productions. Following 

the convention to interpret learning as a binary outcome, the conclusion was that adaptation to 

multiple talkers required twice the conventional exposure dose, despite the failure to observe a 

significant interaction between dose and learning. Cummings and Theodore (2022) found 

evidence of perceptual learning for multiple talkers with exposure doses of both 20 and 40 

critical productions, and – as in Luthra et al. (2021) – found no evidence of an interaction 

between dose and learning, suggesting a ceiling effect on learning consistent with 20 exposures 

providing sufficient evidence to fully accommodate the atypical production. At first blush, these 

discrepant results present a challenge: in terms of a learning binary, does perceptual learning for 

multiple talkers require additional exposure? This apparent conflict resolves itself when viewed 
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through the lens of graded learning. Both studies found no evidence of an interaction between 

dose and learning. However, in Luthra et al. (2021), learning effects within each dose condition 

happen to straddle the threshold for statistical significance, while in Cummings and Theodore 

(2022), learning effects in both conditions landed on the same side of this threshold. 

Furthermore, formal comparisons of the effect sizes observed in these two studies revealed that 

the magnitude of the learning effect across all conditions of Luthra et al. (2021) were smaller 

than those of Cummings and Theodore (2022); most notably, the magnitude of the learning 

effect for the standard dose condition in Cummings and Theodore was approximately twice as 

large as the magnitude of the double dose condition in Luthra et al. (2021). These two studies 

illustrate the importance and promise for considering learning as a graded outcome that may 

reflect the specific to-be-learned acoustic characteristics of a given stimulus set, which is not 

optimally captured when learning is considered as a binary outcome. 

Indeed, we submit that after a foundational 20 years of incredibly fruitful investigation of 

lexically guided perceptual learning, future work stands to benefit from a paradigm shift to 

consider learning outcomes beyond the binary. The ideal adapter model, which has increasingly 

been invoked as an explanatory theory of perceptual learning for speech, provides a theoretical 

framework for examining learning as a graded outcome in response to numerous aspects of the 

listening environment. The current work provides some evidence in support of its primary tenet; 

learning reflects the incremental updating of cue-sound mappings to incorporate observed 

evidence with prior beliefs. Leveraging the computational instantiation of this framework would 

support refinement of researcher assumptions that are critical for understanding how behavioral 

patterns are linked to this theory. Additionally, it potentially provides a means for generating 

fine-grained predictions of human behavior that reflect specific aspects of experimental tasks 
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including idiosyncratic aspects of to-be-learned stimuli. Despite the promising support for the 

ideal adapter model as a theory of speech adaptation (Cummings & Theodore, 2022; 

Kleinschmidt, 2019, 2019; Kleinschmidt & Jaeger, 2015, 2016; Liu & Jaeger, 2018; Luthra et 

al., 2021; Theodore et al., 2019; Theodore & Monto, 2019; Tzeng et al., 2021), future research is 

needed to determine whether this theory is in fact sufficient to explain the wide variability in 

learning outcomes that is observed across the lexically guided perceptual learning literature. 

6. CONCLUSION 

The current investigation marries a computational instantiation of the ideal adapter 

framework with a behavioral investigation of lexically guided perceptual learning. This union 

confirms a primary tenet of the ideal adapter framework and, in turn, establishes quantity of 

evidence as a key determinant of adaptation in human listeners. Specifically, we found evidence 

that lexically guided perceptual learning is not a binary outcome; rather, learning is graded in 

response to the quantity of evidence in the input. Moreover, we found no evidence to suggest that 

learning was linked to consistency of the evidence, in line with the predictions of this 

computational framework. The current results provide a strong foundation for future research 

that links graded learning outcomes to other aspects of the input, including the specific acoustic 

instantiation of to-be-learned input. We submit that future work, both behavioral and theoretical, 

will benefit from a departure from the convention to consider perceptual learning as a binary 

outcome. Continued investigation of graded learning outcomes in response to variability in 

speech input will be maximally fruitful for explicating the mechanisms that allow listeners to 

dynamically modify speech perception to reflect structured regularities in speech input. 
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